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Systems factorial technology (SFT) is a theoretically derived methodology that allows for strong inferences
to be made about the underlying processing architecture (e.g., whether processing occurs in a pooled,
coactive fashion or in serial or in parallel).Measures of mental architecture using SFT have been restricted to
the use of error-free response times (RTs). In this article, through formal proofs and demonstrations, we
extended the measure of architecture, the survivor interaction contrast (SIC), to RTs conditioned on whether
they are correct or incorrect. We show that so long as an ordering relation (between stimulus conditions of
different difficulty) is preserved, we learn that the canonical SIC predictions result when exhaustive
processing is necessary and sufficient for a response. We further prove that this ordering relation holds for
the popular Wiener diffusion model for both correct and error RTs but fails under some classes of a Poisson
counter model, which affords a strong potential experimental test of the latter class versus the others. Our
exploration also serves to point to the importance of detailed studies of how errors are made in perceptual
and cognitive tasks.
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There have been two general approaches to the study of human
response times (RTs; Logan, 2002; Townsend et al., 2018). One
method focuses on developing a parametric model capable of
explaining important observed characteristics of RT data. Exem-
plars of this approach include the set of sequential sampling models
such as Relative Judgment Theory (Link & Heath, 1975), Diffusion
Decision Model (DDM; Ratcliff, 1978; Ratcliff et al., 2016), the
Linear Ballistic Accumulator (LBA; Brown & Heathcote, 2008),
and their extensions (e.g., the Leaky Competing Accumulator;
Usher & McClelland, 2001) or competitors (e.g., Decision Field
Theory, based on Ornstein–Uhlenbeck stochastics; Busemeyer &
Townsend, 1993). Using psychologically plausible parameters,
these models successfully explain the relation between choices
and RTs, speed–accuracy trade-offs, the shapes of RT distributions,
choice bias, the relation between correct and error RTs, and even
classical findings and laws of psychophysics (Link, 1992; Luce,
1986; Ratcliff et al., 1999; Ratcliff & Rouder, 1998; Van Zandt &
Ratcliff, 1995). This is useful because it allows decisions to be
decomposed into psychologically meaningful parameters governing
the rate of information accumulation or drift rate, how cautious or
conservative responding is, and other nondecision processes. These
models have also provided useful generalizations and approxima-
tions to neural firing rates (measured through single-cell recording,

electroencephalography [EEG], functional magnetic resonance imag-
ing [fMRI]), hence providing important bridging links, via latent
model parameters, between behavior and the underlying neural
mechanisms (Forstmann & Wagenmakers, 2015; Smith, 2010).
A key limitation of the single model approach is that it makes

strong assumptions about the architecture of information processing,
and in turn, additional assumptions about other aspects such as
stopping rule and processing capacity. To wit, these assumptions
have been recently challenged on several grounds (Jones &
Dzhafarov, 2014, but see Smith et al., 2014 and Heathcote et al.,
2014). Parameterized models bear other potential weaknesses. For
instance, even models possessing the exact same number of parame-
ters can differ greatly in their complexity and therefore their innate
data-fitting ability. This fact can be witnessed by comparing two
competing models of pattern recognition and confusion: The popular
Similarity Choice Model (Luce, 1963) has been demonstrated to be
significantly more complex than a natural competitor, the Overlap
Model (Townsend, 1971b; see also Myung & Pitt, 2009; Townsend &
Landon, 1983). Finally, one model may predict data better simply
because of its specific distributional assumptions rather than because of
more fundamental psychological characteristics.
The second approach focuses on developing theoretically moti-

vated methods for deriving qualitatively distinct predictions from
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large classes of information processing models. These approaches
often attempt to avoid assumptions about specific distributions of
either model components or outcome variables, making them
general and powerful. One of the major goals of such approaches
is to design accompanying experimental methods that avoid model
mimicry, a common specter in the behavioral sciences. Even two
rigorously defined mathematical models based on critically distinc-
tive assumptions can oftentimes mimic one another’s predictions,
even to the point of mathematical equivalence (Greeno & Steiner,
1964; Jones & Dzhafarov, 2014; Khodadadi & Townsend, 2015;
Townsend, 1971a).
One meta-theoretic approach, systems factorial technology (SFT;

Townsend et al., 2018; Townsend & Nozawa, 1995), has systemat-
ically built upon and generalized many of the key historical
theories including, among others, the method of subtraction
(Donders, 1868), additive factors methods (Schweickert, 1978;
Sternberg, 1966, 1969; Townsend, 1971a, 1984), redundant target
methods (Miller, 1982; Raab, 1962), and trichonometric theory
(Schweickert & Townsend, 1989). SFT has been reviewed in several
contemporary tutorials (Algom & Fitousi, 2016; Altieri et al., 2017;
Harding et al., 2016; Townsend et al., 2018) in the recent volume by
Little, Altieri, et al. (2017) and a special issue of the Journal of
Mathematical Psychology (Houpt et al., 2019). The present article
extends the inferences of SFT to included RTs conditioned on
whether the response was correct or incorrect.
SFT has enabled important results in a number of important areas,

but these results are limited to the analysis of correct RTs. The
analytical tools and methods encompassed under the umbrella of
SFT have led to advances in visual search (Fific, Townsend, et al.,
2008), categorization (Blunden et al., 2015; Fific et al., 2010; Fific,
Nosofsky, et al., 2008; Little et al., 2011, 2013;Moneer et al., 2016),
recognition memory (Townsend & Fific, 2004), face processing
(Cheng et al., 2018; Fific & Townsend, 2010), numerical processing
(Garrett et al., 2019), change detection (Blunden et al., 2021; C.-T.
Yang et al., 2011, 2013), long-term memory retrieval (Cox & Criss,
2017; Howard et al., 2020; Shang et al., 2021), single-unit firing
patterns in macaques (Lowe et al., 2019), and simple detection
(C.-T. Yang, Little, et al., 2014). Townsend et al. (2018) present a
recent overview of SFT accompanied by an annotated list of
applications. The underlying theorems supporting inferences in
each of these cases and others are based on error-free responding.
As an example, consider an implementation of SFT to the study of

categorization. Fific, Nosofsky, et al. (2008) were interested in the
characteristics of processing that differentiate the categorization of
integral dimension from separable dimension stimuli. Integral di-
mensions, like brightness and saturation, are difficult to attend in
isolation; on the other hand, separable dimensions, such as shape
and color, can be analyzed independently (Algom & Fitousi, 2016;
Ashby et al., 1994; Burns, 2016; Garner, 1974; Nosofsky& Palmeri,
1997a; Shepard & Chang, 1963; Shepard et al., 1961). Using SFT,
Fific et al. found that integral dimensions were best characterized by
overadditivity at the distributional level; by contrast, separable
dimensions were best characterized by additivity or underadditivity
at the distributional level. Although there are many converging
results demonstrating a difference between integral and separable
dimensions (see Griffiths et al., 2017 for a review), this was a much
stronger demonstration of a difference in dimensional processing
than previously demonstrated because observation of additivity or
underadditivity for separable dimension rules out a coactive

processing architecture. Until that point, the leading categorization
RTmodels (e.g., the exemplar-based randomwalk model; Nosofsky &
Palmeri, 1997b) assumed coactivity. Follow-up studies have con-
firmed and extended this result for many different types of dimen-
sions (Blunden et al., 2015, 2020; Cheng et al., 2018; Fific et al.,
2010; Little et al., 2011, 2013; Moneer et al., 2016).
The appeal and theoretical importance of SFT lies in its ability to

strongly differentiate several fundamental attributes of information
processing systems (Algom et al., 2015; Townsend & Wenger,
2004). The implication is that formidable model mimicry challenges
alluded to above are thereby obviated. For instance, are multiple
sources of information processed in serial or in parallel? Does
processing stop after processing one source or continue exhaustively
through all sources? Are processes independent or are there facili-
tatory or inhibitory interactions between channels? And what is the
capacity of the information processing system? This line of research
has been particularly important to the continued development of
methods that can explain both choices and RTs at the full distribu-
tional level while avoiding model mimicry between serial and
parallel systems (among others).
While SFT has successfully engaged a multitude of issues in

perception and cognition, the theory has been limited to highly
accurate performance. That is, SFT, at least applied to questions
of information processing architecture and stopping rule, does not
address error rates or error RTs. Although evidence will be cited later
on regarding the robustness of SFT predictions up to moderately high
error rates, it is undeniable that extension of the theory and its implied
methodology would be beneficial. To underscore the importance of
this lacuna, error RTs, both mean values and their distributional
shape, have provided a key source of evidence in the parametric
model approach allowing specific instances of that model to be ruled
out on the basis of empirical data. For instance, the Wiener diffusion
model, a simpler model than the DDM that does not allow for
between-trial variation in drift rate, cannot explain the pattern of error
RTs found in many experiments. In fact, in a task without response
bias, the Wiener diffusion model is limited to predicting error RTs
which have the same mean as correct RTs (Diederich & Busemeyer,
2003), a prediction not typically observed in data.
It is arguable that RTs and response frequencies are the only

observable behavioral variables that lie on strong measurement
scales (Roberts, 1979; Townsend, 1992), and as a consequence,
are intimately related to internal processing mechanisms and their
dynamics. Increasing the application of SFT to explain both correct
and error RTs adds powerful additional constraints to competing
hypotheses and models over and above the focus on a single
dependent variable. An unavoidable outcome of increasing the
scope of the analysis to include additional observable variables is
that the attendant models increase in complexity. This additional
complexity affords a double-edged sword since the related beha-
viors emerge in a more intricate fashion and canonical experimental
distinctions are sometimes limited. However, the ensuing diversity
also offers new opportunities for assessing more detailed psycho-
logical issues connected to models and their predictions.

Brief Overview of SFT

Broadly speaking, there are three major threads to SFT, accom-
panied by appropriate diagnostic analyses: capacity, resilience, and
architecture. The study of capacity makes use of the Capacity
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Coefficient, which informs researchers about the system’s ability to
cope with increased load (typically an increase in the number of
signals presented for processing). The theory underlying the mea-
surement of workload capacity has already been extended to error
RTs, termed the Assessment Function (Donkin et al., 2014;
Townsend & Altieri, 2012). The Assessment Function opens the
methodological gateway to critical studies involving speed–
accuracy trade-offs (Donkin et al., 2014). The study of resilience
makes use of the Resilience and Conflict Contrast Functions, which
assess how functions cope with distracting or conflicting informa-
tion (Houpt & Little, 2017; Little et al., 2015, 2018). The form of the
resilience function is highly similar to the capacity coefficient but
adds additional contrasts between differing levels of distractor
salience. Finally, the study of architecture uses the survivor inter-
action contrast (SIC), which informs whether processing is serial,
parallel, or coactive and whether the stopping rule is exhaustive or
self-terminating. To date, the essential theory for differentiating
architecture and stopping rules, via the SIC, applies only to correct
RTs. The purpose of this article is to provide new theorems
extending the nonparametric SIC results to RTs conditioned on
correct or error responding. In addition, we investigate some popular
parameterized models in order to assess whether they meet the
conditions important to the validity of the theorems as well as to
exemplify those theorems.
In the following, we define the nonparametric forms of the

conditional RT distributions (conditioned on correct or error re-
sponding) for different classes of model architecture. SFT makes
use of the double factorial design (Townsend & Nozawa, 1995).
Figures 1 and 2 show examples of a double factorial detection
experimental design using an AND rule and an OR rule,
respectively.
In the double factorial design, the observer is presented with a pair

of stimuli at two locations. The observers task is to detect the
presence of a target at either one or both locations (OR task) or at
both locations (AND task). As indicated in Figures 1 and 2, the
salience of the target varies but is irrelevant to the response.

Both high and low salience targets are treated as present. Varying
salience, however, influences the RT with which a detection deci-
sion is made.
It is important to note that the experimental design often dictates

the appropriate stopping rule. For instance, in an AND design (and
by definition, therefore using a conjunctive rule), processing of all
items, dimensions, and so forth of a designated target class must be
completed before a “positive” response can be made. A “negative”
response will be made if any of the dimensions or features are not
members of that class. Here we define an exhaustive stopping rule as
processing all available sources of information regardless of
whether a decision could logically be made earlier. By contrast,
a self-terminating stopping rule is one in which processing stops as
soon as a response can be determined. In an AND design, exhaustive
and self-terminating responding can be differentiated on the basis of
negative, nontarget responses but not on the basis of positive, target
responses. These definitions correspond to similar definitions used
by Sternberg (1969) in his classic study of recognition memory.
On the other hand, in an OR design using a disjunctive rule, a

positive response can be made if any of the dimensions or features is
a member of the positive target class. In contrast, a negative response
must be made only if none of the presented dimensions are of that
class (i.e., they are all members of a different class, or classes, e.g.,
distractors or noise items). Hence, in an OR condition, the nontarget
class requires processing of all items, dimensions, and so forth, thus
preventing the differentiation of exhaustive and self-terminating
stopping rules. By contrast, positive target responses in the OR task
can be used to differentiate exhaustive and self-terminating proces-
sing. OR conditions are often found in so-called redundant signals
experimental designs.

Figure 1
Example of the Double Factorial AND Design

Note. Target response stimuli have a factorial manipulation of target salience in
two locations. Nontarget response stimuli are present in either one or neither
location. Dark, light, and absent circles represent high salience (H), low salience
(L), and null (X) target stimuli, respectively.

Figure 2
Example of the Double Factorial OR Design

Note. Target response stimuli have a target in either two or one location.
Nontargets have no targets presented in either location. Dark, light, and absent
circles represent high salience (H), low salience (L), and null (X) target stimuli,
respectively.
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Inappropriate or inefficient stopping rules can be used and still
lead to a correct outcome. For instance, while an exhaustive
stopping rule is appropriate for target responses in an AND task,
exhaustive stopping can also be used for target responses in an OR
task and will still produce accurate, albeit temporally inefficient,
responses. Conversely, application of inappropriate rules to certain
scenarios can lead to errors, and errors can be generated from a
system in a variety of ways. For instance, when a double target is
presented in an AND task, a system will generate errors if it fails to
detect a target in one location. The timing of the error will depend on
whether the system continues to exhaustively process the other
location or whether the system terminates processing at that point. In
an OR task, exhaustive models can respond accurately, if both
locations are identified appropriately but are again inefficient since
processing can legitimately terminate after a target location is found.
Using the existing suite of SFT methods, in actual experiments

using the double factorial paradigm (see, e.g., Little et al., 2011), in
both AND and OR conditions, we often observe that participants
adopt self-terminating processing for the disjunctive rule items
(nontargets in the AND condition, see Figure 1; targets in the
OR condition, see Figure 2) and exhaustive processing for the
conjunctive rule items (targets in the AND condition, see Figure 1;
nontargets in the OR condition, see Figure 2). A prevailing response
pattern is that processing corresponds to a self-terminating system
which follows the appropriate response rule: AND target responses
follow from exhaustive processing but AND nontarget responses are
the results of self-termination; OR target response are the results of
self-terminating processing but nontarget responses follow from
exhaustive processing. This type of response strategy allows for
accurate responding to all items but also efficient RTs (see, e.g.,
Fific, Nosofsky, et al., 2008).
There are, naturally, many other kinds of self-terminating situa-

tions, a highly important one being single-target self-termination
(e.g., Atkinson et al., 1969; Blaha & Houpt, 2015; Sternberg, 1966).
Another important system is one which always terminates after the
first process is complete (termed first-terminating or minimum time
response). The latter two rules would violate the response rule in an
AND task and consequently generate very high error rates. This type
of responding has been termed rule-breaking for this reason
(Bushmakin et al., 2017). Overall, these errors can be thought of
as a consequence of misapplying (deliberate or accidental) an
appropriate rule to the task at hand. Consequently, inefficient
exhaustive processing in an OR task can also be considered as a
type or rule-breaking. We do not focus on rule-breaking models in
this article. Rather, our present focus is on errors of another kind,
that are generated from what might be termed accumulator failures,
in which the identification of a target or nontarget in either location
fails because information arriving from processing that location was
incorrect.
Another fundamental consideration is whether processing of both

channels occurs in serial or in parallel. The architecture of the system
can be completely crossed with the stopping rule, and we refer to
Parallel Exhaustive, Parallel Self-Terminating, Serial Exhaustive,
and Serial Self-Terminating models. As explained in the section
Survivor Interaction Contrasts Conditioned on Accuracy and de-
pending on the task, any of these models may result in error if the
individual processing channels identify the wrong value of a feature
or item. The timing of that error will depend on the combination of
architecture and stopping rule.

The application of the SIC applies to the double-target items (i.e.,
those experimental displays where both signal locations are occu-
pied by target items such as the the “target response stimuli” on the
left-hand side of Figure 1). Errors occur when these double targets
are mistakenly confused for nontarget items. In an OR task, double
targets can also be confused for single targets but still result in a
correct response. The timing of the correct and error responses
depends on the architecture and the stopping rule. We direct the
reader to Table 1 which enumerates the models (architecture plus
stopping rule) that we consider along with task and response pattern
to which it applies. We make a further descriptive distinction of
the type of response pattern evident for the double targets. For
example, while an Exhaustive model is always exhaustive—a Self-
Terminating model may self-terminate depending on the task and
whether the response is correct or in error.
One major challenge is that a key assumption to legitimate

employment of SIC functions, namely selective influence at the
distributional ordering level (Townsend, 1990b), is not always
satisfied. We discuss the selective influence assumption in the
section below. In addition, we will see that, depending on the
stopping rule, the complexity of correct or error responding in-
creases dramatically. Nonetheless, when the model circumstances
are benign, we can utilize distributions that are conditional on being
correct or incorrect in order to analyze the key nonparametric
contrasts (conditional SIC). In such instances, we can demonstrate
the consequent power of SIC functions in assessing architecture and
stopping rule. In short, the diagnosticity of SFT holds at any level of
error so long as a key assumption (about the ordering of the RT
distributions across stimulus conditions) is met. We prove this to be
true in the case of exhaustive processing conditional on correct
responding for the AND task and show that this is the case using
simulations for the self-terminating models conditional on correct
responding.

Selective Influence and the Critical
Statistical Function: SIC

To diagnose processing architecture in the conditions we study
here, the SIC relies on analysis of the RTs of the double-target
stimuli (see Figures 1 and 2). For these stimuli, there is a target in
each location, and the difficulty of each of the target decisions has
been manipulated. For example, in a detection task where a target is
defined by a luminance contrast difference from background, these
four stimulus combinations would be comprised of the following:
(a) high salient targets in both A and B channels (we term this
stimulus HH), (b) a high salient target in the A channel but a target of
lower salience in the B channel (HL), (c) a low salient target in A and
a high salient target in B (LH), and (d) a low salient target in both
channels (LL). Of course, in such tasks, there are also single-target
trials (with only one target), and trials with no target at all, as seen on
the right-hand side of the two figures. These trials ensure partici-
pants must process the presented display before responding and are
also useful for other analyses (such as resilience; Little et al., 2015)
but not for calculations of the SIC.
We now briefly recount the logic attendant to how selective

influence can be manifested in data with sufficient strength to
identify architecture and stopping rules. Townsend and colleagues
(Townsend, 1984, 1990b; Townsend & Ashby, 1978, 1983) inves-
tigated the dominance relationship between random variables and
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proposed several measures that define a hierarchy of implication.
Readers already versed in these matters can skip to the next section.
We introduce four measures that are most relevant for our

purposes. The first two measures are the mean and the cumulative
distribution function (CDF). Suppose there are two random vari-
ables T1 and T2. If the CDF of T1 is larger than the CDF of T2, that
is,F1(t)>F2(t) for all t, we say T1 and T2 are stochastically ordered,
or T1 < T2; we also refer to this situation as the stochastic
dominance of F1(t) over F2(t). This ordering of distribution func-
tions implies that the mean of the random variables is also ordered,
that is, E(T1) < E(T2). In addition, since survivor functions S(t) are
defined as one minus the CDFs, it is clear that an ordering of the
CDFs is equivalent to an ordering of the survivor functions.
The third measure is the hazard function, which measures the

ordering between two variables at a stronger level. The hazard
function is given by dividing the density function by the survivor
function: h(t) = f(t)/S(t). Townsend and Ashby (1978) showed that
an ordering of hazard functions, h1(t) > h2(t) for all t, is stronger
than an ordering of the associated CDFs, F1(t)> F2(t) for all t, in the
sense that the former implies the latter but not vice versa. The proof
is based on the relationship between the hazard function and the
survivor function: −ln½SðtÞ� = ∫ t

0hðsÞds.
The final measure involves the likelihood ratio function, L(t). For

random variables, T1 and T2, we define the likelihood ratio function
as L(t)= f1(t)/f2(t). If L(t) is monotonically decreasing with t, then T1
and T2 are ordered at the likelihood ratio level, which implies
orderings at both the hazard function level and the CDFs.
Note that channels A and Bmight entail differing overall levels of

difficulty such that the RT for HL does not equal the RT for LH.
Such equality is unnecessary. This factorial manipulation of diffi-
culty on each channel allows one to construct a set of contrasts that
can be used to identify distinct processing architectures. For
instance, SFT generalizes the additive factors method by showing
that although serial models predict additivity at the mean RT level,
as Sternberg showed for either self-termination or exhaustive

processing (Sternberg, 1969), parallel models predict underadditiv-
ity or overadditivity depending on whether the stopping rule is
exhaustive or self-terminating, respectively (Schweickert, 1978;
Schweickert & Townsend, 1989; Townsend, 1984; Townsend &
Nozawa, 1995). This test can be efficiently summarized in the mean
interaction contrast (MIC for short), with M̄ , being the mean RT
from the four factorial conditions:

MIC = ½M̄LL − M̄LH� − ½M̄HL − M̄HH�: (1)

Amuch stronger test arises through contrasting the distributions for
each of the factorial targets (Sternberg, 1969; Townsend, 1990b). The
measure is based on the interaction of the survivor functions. It is
helpful here to highlight the notation that we use throughout. f(t) refers
to the probability density function (PDF). In the context of speeded
decisions, the PDF is the probability that processing had terminated
(and a response is given) at time t. The PDF can be estimated
empirically using the histograms of RTs from each condition (van
Zandt, 2000). FðtÞ = ∫ t

0 f ðtÞdt = PðT ≤ tÞ refers to the CDF and
gives the probability that a positive random variable time T is less than
or equal to some time t. The survivor function, SðtÞ = 1 − FðtÞ =
∫ ∞t f ðtÞdt = PðT > tÞ, gives the probability that a positive random
variable time T is greater than some time t; that is, the probability that
the process has not ended by time t. The SIC is then given as:

SICðtÞ = ½SLLðtÞ − SLHðtÞ� − ½SHLðtÞ − SHHðtÞ�
= ½PLLðT > tÞ − PLHðT > tÞ� − ½PHLðT > tÞ − PHHðT > tÞ�:

(2)

Townsend and Nozawa (1995) showed that several classes of
architecture and stopping rule make qualitatively different nonpara-
metric predictions for the SIC. Under some minimal assumptions,
outlined below, the different models cannot mimic each other,
which breaks a long-standing limitation of testing these models

Table 1
List of Accumulator Failure Models and the Task and Response to Which They Apply

Response Task Architecture Stopping rule Equation Proposition States

Correct Conjunctive (AND) Parallel Exhaustive 5 1 1
Correct Conjunctive (AND) Parallel Self-Terminating 6 2 1
Correct Conjunctive (AND) Serial Exhaustive 8 3 1
Correct Conjunctive (AND) Serial Self-Terminating 9 4 1
Correct Disjunctive (OR) Parallel Exhaustive 5 a 1–3
Correct Disjunctive (OR) Parallel Self-Terminating 13 a 1–3
Correct Disjunctive (OR) Serial Exhaustive 8 a 1–3
Correct Disjunctive (OR) Serial Self-Terminating 14 a 1–3
Error Conjunctive (AND) Parallel Exhaustive 5 a 2–4
Error Conjunctive (AND) Parallel Self-Terminating 6 a 2–4
Error Conjunctive (AND) Serial Exhaustive 8 a 2–4
Error Conjunctive (AND) Serial Self-Terminating 9 a 2–4
Error Disjunctive (OR) Parallel Exhaustive 5 1b 4
Error Disjunctive (OR) Parallel Self-Terminating 13 2b 4
Error Disjunctive (OR) Serial Exhaustive 8 3b 4
Error Disjunctive (OR) Serial Self-Terminating 14 4b 4

Note. “States” refer to the states of the model accumulators, shown as lines in each model equation, that enter into the SIC for each model. Formal definitions
are provided at the equations listed along with the propositions for the conditional SICs. SIC = survivor interaction contrast.
a The SIC is comprised of a mixture of states where both channels are correct (or in error) or where only one channel is correct (or in error). We rely on
simulations for these models. b The roles of the correct and error accumulators in these equations should be swapped.
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(Little, Eidels, et al., 2017; Townsend, 1990a). Consequently,
estimating the MIC and SIC from empirical data in the four factorial
conditions (HH, HL, etc.) can be used to rule out whole model
classes. Figure 3 shows the SIC shapes for several processing
models. H. Yang, Fific, et al. (2014) generalize these signatures
to an arbitrary number of processes (i.e., beyond two). In the next
section, we derive proofs for SIC signatures where performance is
imperfect, conditioned on correct and error responses.

SICs Conditioned on Accuracy

Another arm of SFT, which we only briefly mention here,
concerns with the processing capacity of the system. Townsend
and colleagues (Townsend & Nozawa, 1995; Townsend &Wenger,
2004) demonstrated how different models produce different capac-
ity functions that capture the system’s ability to handle changes in
the amount of information presented for processing. These seminal
studies focused on high accuracy, error-free performance. In order to
derive the Assessment Function, thereby generalizing the theory of
capacity to account for correct and error RTs, Townsend and Altieri
(2012) considered the properties of a pair of accrual halting models
(i.e., a pair of accumulators racing to a threshold; see Figure 4). Each
pair of accumulators represents a single-target channel (e.g., A or B),
and each can either terminate correctly or in error. For simplicity, we
refer to correct and incorrect accumulators in each channel rather
than the actual stimulus values detected in each channel. For
example, in an AND task, a double target will elicit an incorrect
response if either Channel A or Channel B (or both) finish in error
(where error in this case is the incorrect determination that a target
signal was not present). That is, in an AND task, the response for a
redundant target will be correct only if a target is detected correctly
in both channels; hence, should any channel terminate incorrectly,
the overall response will be in error. As explained below, the timing
of this error will depend on whether the stopping rule is exhaustive
or self-terminating and whether the architecture is parallel or serial.
The completion time for a pair of accumulators within a channel

(e.g., Ta1 and Ta2) is given by the completion time of the first
accumulator to finish (e.g., the completion time is equal to the Ta1
completion time if Ta1≤ Ta2). More formally, the overall completion
time for Channel A is Ta = min (Ta1, Ta2), where Ta1 and Ta2 is the
completion time of each accumulator. Likewise, Tb=min (Tb1, Tb2).
The total RT, T, is a function of the finishing time on each channel:
T = f(Ta, Tb), where the form of f depends on how the two channels

operate in the system (but not on the assumption of parallel
processing within channels).
In the original formulation of the SIC, where each channel is

always assumed to be correct, the RT is determined only by the
architecture and the stopping rule. Specifically, in a Serial Exhaus-
tive architecture, for a double target, the total RT is the sum of the
completion times on each channel, TSerialEX = Ta + Tb. In a Parallel
Exhaustive model, the total RT is the maximum time for processing
any single channel, TParallelEX =max (Ta, Tb). In a Self-Terminating
model in an OR design, the system can terminate as soon as any
channel completes correctly. Hence, the total RT in a Serial Self-
Terminating model would equal TSerialST = Ta if Channel A is
processed first and TSerialST = Tb if Channel B is processed first. In
an OR task, for a Parallel Self-Terminating model, the total proces-
sing time is the minimum time to process either channel, TParallelST=
min (Ta, Tb). Corresponding considerations are made for determin-
ing the RT distributions, f.
When accounting for error RTs, the RT depends not only on the

architecture and stopping rule but also on the accuracy of each
channel. For example, for a Parallel Self-Terminating model in an
OR task with both targets present, the total RT is not necessarily the
minimum of the two finishing times because when a target channel
terminates incorrectly, the systemmay still produce a correct response
if the other channel finishes correctly. In the case where Channel A
finishes incorrectly (i.e., “no target signal in A”) but Channel B
finished correctly (“target present in B”), and the overall response is
correct, the total RT is equal to Tb instead of min(Ta, Tb). On the other
hand, if the overall response is incorrect, then the Parallel Self-
Terminating model in the same condition would generate an RT
equal to max(Ta, Tb) because the system would have to wait to
confirm that the second channel also does not contain a target. Similar
considerations apply to Parallel Exhaustivemodels and Serial models.

Conditional SIC Proofs

The conditional SIC predictions rely first on the assumption that the
processing time for Channel A is independent of the processing time
of Channel B, and second that the manipulation of salience on a
channel has an effect only on that channel. For example, a high
salience stimulus in Channel A results in a shorter correct finishing
time on Channel A than a low salience stimulus on Channel A,
regardless of what is happening on Channel B. Note that this
assumption may be violated for errors for some reasonable models
of RTwhich we review below. A third assumption is that of stochastic

Figure 3
Error-Free Survivor Interaction Contrasts for Each of the Canonical Processing Architectures

6 LITTLE, YANG, EIDELS, AND TOWNSEND

Template Version: 22 January 2022 ▪ 6:35 pm IST REV-2020-1568_blupencil ▪ 14 February 2022 ▪ 2:24 pm IST



dominance, which we elucidate further below. The original error-free
proofs in Townsend and Nozawa (1995) did not assume indepen-
dence. They allowed dependence among the processes but imposed
additional conditions that were sufficient to garner the result. Here, we
assume stochastic independence for simplicity along with the impor-
tant condition of stochastic dominance at the distributional level
(Townsend, 1990b). The error-free proofs are stronger in this regard
because stochastic independence in processing is likely violated by
global cognitive variables, such as attention.
Next, recall that in the error-free methodology, higher salience

always speeds up a decision. In the case of less accurate functioning,
we might wish to make the same assumption. As we show in our
simulations, for correct responses, this tenet holds true. However,
we shall see that some models predict faster errors on a low salience
setting than on a high setting. For now, to aid intuition, we shall
simply consider correct responses with the postulate that salience
speeds up decisions in the sense that

PHðT ≤ tjCRÞ > PLðT ≤ tjCRÞ: (3)

We will discover that this holds nicely for all our models but
again, we find intriguing diversity for incorrect responses.
Because the conditional probabilities constitute a true probability

space that sums to one [e.g., PHðT ≤ tjCRÞ + PHðT > tjCRÞ = 1],
an ordering of correct response probabilities implies the converse
ordering on survivor functions. The SIC conditioned on accuracy
can then be written as:

SICcorrectðtÞ = ½SLLðtjCRÞ − SLHðtjCRÞ�
− ½SHLðtjCRÞ − SHHðtjCRÞ�: (4)

It is clear that the SICcorrect(t) is a generalization of the error-free
SIC developed by Townsend and Nozawa (1995); when accuracy
approaches 1, SICcorrect(t) = SIC(t). In the following, we derive the
conditional SIC predictions for Parallel Exhaustive, Serial Exhaus-
tive, Parallel Self-Terminating, and Serial Self-Terminating models
assuming that errors arise from a failure to identify a target in one or
both of the channels.

Correct Responses

AND Task

Correct double-target trials in an AND task are straightforward
since a model can only terminate correctly if both channels are
correct. Error responses in the AND task are complicated by the fact
that an error will be generated if either or both of the channels fail to
detect a target. The added complexity means that stochastic domi-
nance cannot be employed here for SIC predictions conditioned on
error responding; yet it is necessary for theorists to enter this
territory. The various ways of being correct or incorrect are a
psychological reality and must ultimately be confronted, experi-
mented on, and modeled. Since the complexities arise in a similar
manner for each model, we present the formal definitions of the
models first followed by the SICs.

Parallel Exhaustive Models

In an AND task, when a double-target stimulus is presented,
both target channels need to be detected correctly in order to trigger
a correct response. Our modeling approach assumes that proces-
sing of each target signal (or channel) happens on a separate
channel, and within each channel, there is an accumulator for
correct response and an accumulator for an incorrect response (as
illustrated in Figure 4). A correct response is made only when the
correct accumulators in each channel terminate before the incorrect
accumulators in each channel. If either of the incorrect accumu-
lators terminates first, then an error response would be made. This
will occur because, in an AND task, the error channel provides
evidence for a nontarget response. There are therefore four states
depending on which accumulators finish first in each channel. A
Parallel Exhaustive model predicts an exhaustive RT for each of
these states:

if TAC < TAI and TBC < TBI, then TParallelEX
AND = maxðTAC, TBCÞ

if TAC < TAI and TBC > TBI, thenTParallelEX
AND = maxðTAC, TBIÞ

if TAC > TAI and TBC < TBI, then TParallelEX
AND = maxðTAI, TBCÞ

if TAC > TAI and TBC > TBI, then TParallelEX
AND = maxðTAI, TBIÞ: (5)

Parallel Self-Terminating Models

For a Self-Terminating model in an AND task, when a double-
target stimulus is presented, both target channels still need to be
detected correctly in order to trigger a correct response. If either of
the incorrect accumulators terminates first, then an error response
would be made when the error channel triggers self-termination.
There are four states depending on which accumulators finish first in
each channel. A Parallel Self-terminating model predicts a different
RT calculation for each of these states:

if TAC < TAI and TBC < TBI, then TParallelST
AND = maxðTAC, TBCÞ

if TAC < TAI and TBC > TBI, then TParallelST
AND = TBI

if TAC > TAI and TBC < TBI, then TParallelST
AND = TAI

if TAC > TAI and TBC > TBI, then TParallelST
AND = minðTAI, TBIÞ: (6)

Figure 4
A Pair of Accrual Halting Models for Channel A and Channel B

Note. The first accumulator in each pair represents the correct processing of the
attribute in that channel; the second accumulator in each pair represents an error.
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Correct SICs: AND Task—Parallel Models

We first consider the SIC conditioned on the response being
correct. For both the Parallel Exhaustive model (Equation 6) and the
Parallel Self-Terminating model (Equation 1), the first state gen-
erates a correct response, but the remaining three generate error
responses. Furthermore, in both cases, the correct RT is given by the
maximum RT of both accumulators; hence, the conditional correct
SIC proof proceeds identically for both cases.

Proposition 1. Assuming independence, selective influence,
and stochastic dominance, the Parallel Exhaustive model, in an
AND task, predicts that the conditionally correct SIC is nega-
tive for all t.

Proof. For convenience, we use Δ2
A;B to denote the operation of

the double difference on A and B. That is:

Δ2
A,BSABðtÞ = Δ2

A=½L,H�,B=½L,H�SABðtÞ

= ðSLLðtÞ − SLHðtÞÞ − ðSHLðtÞ − SHHðtÞÞ: (7)

Thus, the conditional SIC can be written as:

SICcorrectðtÞ = Δ2
A,BSABðtjCRÞ:

A graphical illustration of the application of the double difference
function is shown in Figure 5. Equation 5 shows that a correct
response is produced only when both channels are correct. Hence,

SICcorrectðtÞ = Δ2
A,B½SðmaxðTAC, TBCÞjTAC < TAI, TBC < TBIÞ�:

Note that the max time can be computed as the product of the
CDFs because A and B are independent; hence, Fmax

AB ðtjCRÞ =
FAðtjCRÞ × FBðtjCRÞ. Consequently, the SIC can be computed as:

SICcorrectðtÞ = Δ2
A,Bð1 − ½FAðtjCRÞ × FBðtjCRÞ�Þ

= −FA=LðtjCRÞ × FB=LðtjCRÞ
+ FA=LðtjCRÞ × FB=HðtjCRÞ
+ FA=HðtjCRÞ × FB=LðtjCRÞ
− FA=HðtjCRÞ × FB=HðtjCRÞ

= −ðFA=LðtjCRÞ − FA=HðtjCRÞÞ
× ðFB=LðtjCRÞ − FB=HðtjCRÞÞ:

Due to the assumption of stochastic dominance, FLðtjCRÞ <
FHðtjCRÞ for all t implying that the two factors in the product
are negative. Hence, the product is positive but negated, which
proves that the conditional SIC for the Parallel Exhaustive model is
negative for all t like its error-free counterpart. ▫

Proposition 2.Assuming independence and selective influence,
the Parallel Self-Terminating model, in an AND task, predicts
that the conditionally correct SIC is negative for all t.

Proof. The proof is the same as for the Parallel Exhaus-
tive model. ▫

This proof shows that when conditioned on accuracy, the Parallel
Exhaustive model and Parallel Self-Terminating model predict
completely negative SICs in an AND task. Below, in the section
Computation of Conditional SIC Functions, we show via computa-
tion that the shape of this SIC is commensurate with the shape of the
error-free SIC prediction shown in Figure 3 for the Poisson model
simulations considered in this article.

Serial Exhaustive Model

For a Serial Exhaustive model, in an AND task, the RT is always
predicted as the sum of both processing channels:

Figure 5
Example of the Application of the Double Difference Function

Note. Left panel: Survivor functions. Right panel: SIC function. Note that the survivor functions were sampled from a Parallel
Exhaustive model when both channels are correct. SIC = survivor interaction contrast. See the online article for the color version of this
figure.
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if TAC < TAI and TBC < TBI, then TSerialEX
AND = TAC + TBC

if TAC < TAI and TBC > TBI, then TSerialEX
AND = TAC + TBI

if TAC > TAI and TBC < TBI, then TSerialEX
AND = TAI + TBC

if TAC > TAI and TBC > TBI, then TSerialEX
AND = TAI + TBI: (8)

Serial Self-Terminating Models

For a Serial Self-Terminating model, in an AND task assuming
that Channel A is processed first, the processing time for the correct
response (the first state) will be the same as the Serial Exhaustive
model. The RTs for the error states, however, will differ depending
on when the model can self-terminate. In the original SFT work, it is
assumed that Channel A is processed first with a fixed probability, p,
and that Channel B is processed first with probability 1 − p.
To simplify the case, we assume that Channel A is always processed
first:

if TAC < TAI and TBC < TBI, then TSerialST
AND = TAC + TBC

if TAC < TAI and TBC > TBI, then TSerialEX
AND = TAC + TBI

if TAC > TAI and TBC < TBI, then TSerialEX
AND = TAI

if TAC > TAI and TBC > TBI, then TSerialEX
AND = TAI: (9)

Correct SICs: AND Task—Serial Models

For both the Serial Exhaustive and Serial Self-Terminating
models, only the first state produces a correct response, the other
states generate error responses.

Proposition 3. Assuming independence, selective influence,
and stochastic dominance, the Serial Exhaustive model in an
AND task predicts that the conditional SIC for correct re-
sponses is negative for small values of t and later becomes
positive. Furthermore, the integral over the positive real line
(i.e., of t) of the SIC function is 0.

Proof. The conditional SIC for the Serial Exhaustive model in
an AND task has the following expression:

SICcorrectðtÞ = Δ2
A,B½SðTAC + TBCjTAC < TAI, TBC < TBIÞ�:

The survivor function for the sum of two variables is the sum of
the probabilities that Channel A does not finish by time t and is
correct, SAðtjTAC < TAIÞ , plus the probability that Channel A
finishes before time t, but in the remaining time, Channel B does
not finish; the latter term being the convolution of the density for the
Channel A correct accumulator and the survivor function for the
Channel B correct accumulator, ½ f A � SB�ðt

����TAC < TAI , TBC < TBIÞ
. Hence, the conditional SIC can be written as follows:

SICcorrectðtÞ = Δ2
A,BðSAðtjTAC < TAIÞ +

ð
t

0
f AðτjTAC < TAIÞ

× SBðt − τjTAC < TAI, TBC < TBIÞdτÞ: (10)

The first term cancels out in the double difference; expanding the
second term gives:

SICcorrectðtÞ =
ð
t

0
f A=LðτjTAC < TAIÞSB=Lðt − τjTBC < TBIÞdτ

−
ð
t

0
f A=LðτjTAC < TAIÞSB=Hðt − τjTBC < TBIÞdτ

−
ð
t

0
f A=HðτjTAC < TAIÞSB=Lðt − τjTBC < TBIÞdτ

+
ð
t

0
f A=HðτjTAC < TAIÞSB=Hðt − τjTBC < TBIÞdτ:

(11)

Factoring the double difference function gives:

SICcorrectðtÞ =
ð
t

0
½SB=Lðt − τjTBC < TBIÞ − SB=Hðt − τjTBC < TBIÞ�

× ½ f A=LðτjTAC < TAIÞ − f A=HðτjTAC < TAIÞ�dτ:
(12)

This equation has the same form as Theorem 4 in Townsend and
Nozawa (1995; see also Proposition 2.1 in H. Yang, Fific, et al.,
2014); our proof therefore follows the same logic: Due to the
stochastic dominance assumption, SLðtjCRÞ > SHðtjCRÞ , and the
first term is positive for all t.
For the second difference, ½ f A=LðτjTAC < TAIÞ − f A=HðτjTAC <

TAIÞ�will be nonpositive for some τ less than t* (and strictly negative
for some τ) after which the differencewill be positive. The conditional
SIC for the Serial Exhaustivemodel is therefore negative for the initial
component of the function, for t ≤ t* and then positive thereafter.
Since the integral of the SIC over the real line equals 0, the positive
integral will equal negative integral. If the densities cross more than
once, then the SIC will cross 0 an odd number of times and fL(τ) will
be less than fH(τ) for small t (Townsend, 1990b; Townsend &
Nozawa, 1995; H. Yang, Fific, et al., 2014).
Finally, for any nonnegative random variable, T, ∫ ∞0 PðT >

tÞdt = E½T�, where E[T] is the expected value. Consequently, the
integral of the SIC is equal to E[TA=L+ TB=L]− E[TA=L+ TB=H]− E
[TA=H + TB=L] + E[TA=H + TB=H] which equals 0. (This is evident
since the expected value of the sum of two random variables is
equal to the sum of the expected values of each random variable.) ▫

Proposition 4. Assuming independence, selective influence, and
stochastic dominance, the Serial Self-Terminating model, in an
AND task, predicts that the conditional SIC for correct responses is
negative for small values of t and later becomes positive. The
integral over the positive real line (i.e., of t) of the SIC function is 0.

Proof. The proof is the same as for the Serial Exhaustive model.
▫

OR Task

In an OR task, correct responses inmodels in which errors arise due
to accumulator failures are more complicated in the sense that correct
responses are sometimes made by “partially” correct judgments. That
is, subjects only need to be correct on one channel to give a correct
response. Because of this, stochastic dominance cannot be assured for
the conditional correct SIC predictions. Given a pair of independent
accumulators, for each model, there are again four possible states;
however, in the OR design, the first three states correspond to correct
responses while only the last corresponds to an error response.
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Parallel Exhaustive Models

The RTs associated with each state of a Parallel Exhaustive model
in an OR task are the same as in Equation 5. We list the states of the
model here because in an OR design, the first three states lead to a
correct response, while the last state leads to an error response.

if TAC < TAI and TBC < TBI, then TParallelEX
OR =maxðTAC,TBCÞ

if TAC < TAI and TBC > TBI, then TParallelEX
OR =maxðTAC,TBIÞ

if TAC > TAI and TBC < TBI, then TParallelEX
OR =maxðTAI,TBCÞ

if TAC > TAI and TBC > TBI, then TParallelEX
OR =maxðTAI,TBIÞ: (13)

Parallel Self-Terminating Models

AnOR design permits systems which can self-terminate to evince
a minimum time stopping operation. The RTs associated with each
state of a Parallel Self-Terminating model are as follows:

if TAC < TAI and TBC < TBI, then T
ParallelST
OR =minðTAC,TBCÞ

if TAC < TAI and TBC > TBI, then T
ParallelST
OR = TAC

if TAC > TAI and TBC < TBI, then T
ParallelST
OR = TBC

if TAC > TAI and TBC > TBI, then T
ParallelST
OR =maxðTAI,TBIÞ: (14)

Correct SICs: OR Task—Parallel Models

Note that first three states of both parallel models in the OR task
generate correct responses. We denote the probability and the event
of “Channel A being correctly processed” as pA = P(TAC ≤ TAI) and
the probability and the event of “B being correctly processed” as
pB = P(TBC ≤ TBI). The probability of A being processed incorrectly
is (1− pA). To simplify the notation, we refer to the event of Channel
A and Channel B being incorrect as ¬A and ¬B, respectively. The
total probability of responding correctly is P(CR) = pApB + (1 − pA)
pB+ pA(1 − pB). Hence, according to the law of total probability, the
SIC conditioned on correct responding in the OR task is given as:

SICcorrectðtÞ = Δ2
A,BPðT > tjCRÞ

= Δ2
A,B

�
PðT > t∩CRÞ× 1

PðCRÞ

�

= Δ2
A,B

�
PðT > t∩ ½ðA,BÞ�ð¬A,BÞ�ðA, ¬BÞ�Þ× 1

PðCRÞ

�

= Δ2
A,B½PðT > t∩ ðA,BÞÞ + PðT > t∩ ð¬A,BÞÞ

+ PðT > t∩ ðA, ¬BÞÞ�× 1
PðCRÞ

= Δ2
A,B½PðT > tjA,BÞ× pApB

+ PðT > tj¬A,BÞ× ð1− pAÞpB

+ PðT > tjA, ¬BÞ× pAð1− pBÞ�×
1

PðCRÞ :
At this point, we are confronted with the problem that we cannot

observe, nor presume on the basis of any of our assumptions, the
probability that the system is in any of these correct states. Further-
more, these state probabilities are likely to differ in unknown ways
between the LL, LH, HL, and HH stimuli. It is likely that accuracy

rates in L channels are lower than H channels, but without this
information, we cannot make a clear proof of the shape of the
conditional SIC. In the General Discussion section, we highlight a
new method which may allow identifiability of these states; for the
present purposes, we show below (in our section: Computation of
Conditional SIC Functions for Specific Distributions) the form of
the SIC and examine the qualitative shape via simulation.

Serial Exhaustive Models

For a Serial Exhaustive model, the RTs for each state of the
accumulators are given as the sum of the accumulator finishing times.
Hence, the RTs for the Serial Exhaustive model in an OR task are the
same as the Serial Exhaustive model in the AND task (see Equation
8). However, the models make different responses with the first three
states leading to correct responses and the last state leading to an error.

if TAC < TAI and TBC < TBI, then TSerialEX
OR = TAC + TBC

if TAC < TAI and TBC > TBI, then TSerialEX
OR = TAC + TBI

if TAC > TAI and TBC < TBI, then TSerialEX
OR = TAI + TBC

if TAC > TAI and TBC > TBI, then TSerialEX
OR = TAI + TBI: (15)

Serial Self-Terminating Models

Serial Self-Terminating models imply that the two channels are
processed sequentially, and the process is finished whenever a target
is detected, which means that when both targets are presented,
subjects may provide a correct response even if an error is made in
processing the first channel. In the following, we give the expression
of the RT conditioned on the judgment of the two channels. We
again assume that Channel A is always processed first.

if TAC < TAI and TBC < TBI, then TSerialST
OR = TAC

if TAC < TAI and TBC > TBI, then TSerialST
OR = TAC

if TAC > TAI and TBC < TBI, then TSerialST
OR = TAI + TBC

if TAC > TAI and TBC > TBI, then TSerialST
OR = TAI + TBI: (16)

Correct SICs: OR Task—Serial Models

For both Serial models, the first three states result in correct
responses, and the final state is an error response. Denote P(TAC <
TAI) as pA and P(TBC < TBI) as pB. The total probability of
responding correctly (CR) is P(CR) = pA + (1 − pA)pB. Thus,
we can write the conditional SIC function as:

SICcorrectðtÞ = Δ2
A,BPðT > tjCRÞ

= Δ2
A,B

�
PðT > t∩CRÞ× 1

PðCRÞ

�

= Δ2
A,B

�
PðT > t∩ ½A� ð¬A,BÞ�Þ× 1

PðCRÞ

�

= Δ2
A,B½PðT > t∩AÞ + PðT > t∩ ð¬A,BÞÞ�× 1

PðCRÞ
= Δ2

A,B½PðT > tjAÞ× pA + PðT > tj¬A,BÞ× ð1− pAÞpB�

×
1

PðCRÞ :
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We are again left with a conditional SIC function which is
comprised of a mixture of states and rely on simulations to examine
these SICs.

Interim Summary I

We provided proofs for the SICs conditioned on correct responses
and found that, for the AND task, these proofs mirror the error-free
SIC proofs (Townsend & Nozawa, 1995). For the OR task, the SICs
conditioned on correct responses reflect a mixture of possible correct
states. This mixture prevents us from determining the appropriate
dominance relations, which in turn prevents establishing a proof of
the SIC. In the next section, we will outline the SICs for the error
responses and find a similar relationship.

Error Responses

AND Task

In an AND task, errors are generated whenever any of the
channels terminates at a nontarget response. Observe that this
symmetry (between errors in the AND task and correct responses
in the OR task) means that similar considerations apply.

Parallel Models

For a parallel model, the last three states of Equations 5 and 6 all
lead to error responses, the total error RT is a mixture of these
expressions. According to the law of total probability, we can
express the error conditioned SIC as:

SICerrorðtÞ=Δ2
A,BPðT > tjERÞ

=Δ2
A,B

�
PðT > t∩ERÞ× 1

PðERÞ

�

=Δ2
A,B

�
PðT > t∩ ½ð¬A,¬BÞ�ð¬A,BÞ�ðA,¬BÞ�Þ× 1

PðERÞ

�

=Δ2
A,B½PðT > t∩ð¬A,¬BÞÞ+PðT > t∩ð¬A,BÞÞ

+PðT > t∩ðA,¬BÞÞ� × 1
PðERÞ

=Δ2
A,B½Sðtj¬A,¬BÞ × ð1−pAÞð1−pBÞ

+ Sðtj¬A,BÞ× ð1−pAÞpB

+ SðtjA,¬BÞ×pAð1−pBÞ� ×
1

PðERÞ :

Thus, we have the same problem as for the correct OR task
results in that we cannot presume the probability that the system
is in any of these error states for either the Parallel Exhaustive or
Parallel Self-Terminating model and rely on simulations to
investigate their shape.

Serial Models

The final three states in Equations 8 and 9 generate error
responses. The error conditioned SIC reflects a mixture of error
states preventing a proof of the SIC shape. We again rely on
simulations, presented below, to investigate these models.

OR Task

In an OR task, error responses are generated whenever both
channels fail to detect the presence of a target. As we shall see,
errors in an OR task require exhaustive responding, consequently
allowing proofs of the SIC shapes conditioned on error
responding.

Parallel Models

The final state in Equations 5 and 14 is the sole error state in the
Parallel Exhaustive and Parallel Self-Terminating models, respec-
tively, in the OR task. If we assume that the distributions of the error
RTs are stochastically ordered such that SLðtjERÞ dominates
SHðtjERÞ, then we can proceed with a proof of the error conditioned
SIC shape.

Proposition 5. Assuming independence, selective influence,
and stochastic dominance of the error RTs, the Parallel Exhaus-
tive model, in an OR task, predicts that the conditional error SIC
is negative for all t.

Proof. The proof follows the same form as for the conditional
correct SIC for the parallel models in the AND task but with the
error accumulator taking the place of the correct accumulator.

▫
Proposition 6.Assuming independence and selective influence,
along with stochastic dominance of the error RTs, the Parallel
Self-Terminating model, in an OR task, predicts that the
conditional error SIC is negative for all t.

Proof. The proof follows the same form as for the conditional
correct SIC for the parallel models in the AND task and the
conditional error SIC in the OR task. ▫

Serial Models

The error state in both Serial models arises through summing
the finishing times from both accumulators when both accumu-
lators fail to detect both targets. Hence, if we assume stochastic
dominance of the error RTs, then the proof of the SIC shape can
proceed.

Proposition 7. Assuming independence, selective influence,
and stochastic dominance of the error RTs, the Serial Exhaus-
tive model in an OR task predicts that the conditional SIC for
error responses is negative for small values of t and later
becomes positive. Furthermore, the integral over the positive
real line (i.e., of t) of the SIC function is 0.

Proof. The error conditioned SIC for the Serial Exhaustive
model in an OR task follows the same form as the correct
conditioned SIC for the Serial models in the AND task with the
error accumulator replacing the correct accumulator. ▫

Proposition 8. Assuming independence, selective influence,
and stochastic dominance of the error RTs, the Serial Self-
Terminating model, in an OR task, predicts that the conditional
SIC for error responses is negative for small values of t and later
becomes positive for larger values of t. The integral over the
positive real line (i.e., of t) of the SIC function is 0.
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Proof. The proof is the same as for the Serial Exhaustive model
with the error accumulator replacing the correct accumulator.

▫

Interim Summary II

For models in which the response is generated from a single state,
we have provided proofs that, conditioned on correct and error
responding, the SIC functions take on the same qualitative shape as
their error-free counterparts. For the models in which the response is
generated from a mixture of states, however, because we are unable
to identify the probability that the system is in each of the correct
states, we are unable to determine the shape of the conditional SIC in
the usual general fashion.
We next explore the relationship between high and low salience

further by analyzing the behavior of correct and error RTs resultant
from a salience manipulation applied to the rates of two major
classes of parameterized process models: the Wiener diffusion
sequential sampling model and its current extensions and Poisson
counter-race models.1 Although the latter do have some popular
instantiations, they have not been so standardized as have the usual
diffusion models. It will be seen that even the more complex
diffusion models, with mixtures of starting states and drift rates
deliver canonical types of dominance relations and thereby the
common SIC predictions.
Intriguingly, the Poisson race models, depending on exact as-

sumptions about the rates of correct versus incorrect processing
channels, can result in distinct dominance relationships on “wrong”
decisional RTs. In fact, we prove that when the rates are constrained
to equal the same sum across different levels of salience (i.e., the sum
of the rates for the correct and incorrect accumulators are the same
for a high salience stimulus as it is for a low salience stimulus), the
correct RTs will be faster for the high salience case compared to the
low salience case. By contrast, the error RTs will be faster for the low
salience case compared to the high salience case. When the salience
manipulation only affects the correct channel, we show that high
salience correct RTs are still faster than low salience correct RTs, and
that high salience error RTs are also faster than low salience error
RTs. This will also be the prediction for Poisson race models where
both rates can change with salience but the difference between
correct rates will be larger than than between incorrect rates.

Selective Influence and Stochastic Dominance for
Specific Popular Parameterized Models

The original SIC proofs (Townsend & Nozawa, 1995) and
the new, conditional SIC expressions above rely on the critical
assumption of effective selective influence, namely that the
speed of processing a high salience stimulus (H) is faster than
the speed of processing a low salience stimulus (L; i.e., that the
manipulation of salience is effective) and that the manipulation
of Channel A had no impact on Channel B (i.e., that there is
selective influence of each channel). This leads to a dominance
relationship on the RT distributions (Townsend, 1990b), as
discussed earlier. To extend the SIC to systems that may give
rise to errors, this salience assumption needs to be discussed for
correct and errors separately.
Here we explore the relationship between high and low salience

by analyzing the behavior of correct and error RTs resultant from a

salience manipulation applied to the rates of the two major classes of
process models mentioned above, the Wiener diffusion sequential
sampling models and extensions and two versions of Poisson
counter-race models. We will demonstrate that even the fairly
complex diffusion models make the canonical qualitative predic-
tions engendered in the error-free case for both the dominance
relations and the SIC predictions.
Moving to Poisson counter-race models, three versions are

taken up, that differ in the ways processing rate changes across
correct and incorrect accumulators: (a) Poisson Model I: It is
assumed that the sum of the correct and incorrect processing rates
stays constant as salience is manipulated (such that a higher-
quality signal leads to faster correct rate and slower incorrect
rate). (b) Poisson Model II: It is assumed that while the correct
rate is increased as a function of salience, the incorrect rate stays
constant. (c) Poisson Model III: Both incorrect and correct rates
can change and the difference between the correct and incorrect
rates becomes larger with increased salience but the sum is
unconstrained.
Next, intriguingly, we will learn that the more frequently

utilized Poisson race model, Model I, does make the expected
prediction that processing times conditioned on being correct are
ordered such that correct decisions are faster when salience is
higher. In surprising contrast, this class of models predicts that
incorrect decisions are actually faster in a strong stochastic sense,
when salience is lower! The opposite is the case for Poisson race
Models II and III: both correct and incorrect decisions are faster
with higher salience.
Diffusion models assume a kind of random walk back and forth

on continuous evidence regarding the two choices (Ratcliff, 1978).
Although discrete state-space random walks are possible (e.g.,
Link & Heath, 1975) and random walk models based on Poisson
distributions have now appeared (Blurton et al., 2020), we focus on
the continuous state-space models here with the usual underlying
Wiener process noise system.
On the other hand, in race models of which Poisson models are

the most common, two channels, each comprised of two counters,
are separately accumulating evidence for the two respective
alternatives. The most studied of these assume independent Pois-
son counting distributions in the two channels (e.g., Audley &
Pike, 1965; Townsend & Ashby, 1983). However, generalizations
to non-Poisson counters have been increasing in frequency (e.g.,
Smith & Van Zandt, 2000; Tillman et al., 2020; Townsend &
Liu, 2020).
All these models can be characterized as sequential sampling

models and all are useful because of their ability to provide
predictions for correct and error RTs, and because in many situa-
tions, these models provide a good explanation of various data
patterns using distinct parameters. Examples include but are not
limited to speed–accuracy trade-off, bias toward one choice, the
skewness of RT data, and the relative speeds of correct and error
responses (Luce, 1986; Ratcliff et al., 1999; Ratcliff & Rouder,
2000; Van Zandt & Ratcliff, 1995). Computational methods have
been developed to obtain predictions for such models (Diederich &

1 Readers should take note that the diffusion and Poisson models are being
applied to individual channels. Thus, a diffusion model of the full response
would involve two diffusion processes—one for each channel—arrayed in
serial or in parallel.
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Busemeyer, 2003; Smith & Van Zandt, 2000). We provide predic-
tions deriving directly from the analytic forms of the RT expres-
sions, rather than using numerical methods.
Sequential sampling models assume that decisions are made by

accumulating noisy information to some predetermined decision
criteria. Therefore, performance in a task is affected by two main
factors: the quality of the information extracted from the stimulus
which determines the accumulation rate (i.e., the stimulus salience
level) and the quantity of information required to make a response.
The value of these two factors combined together produces predic-
tions on RTs and correctness of each trial. In this article, we limit our
scope to the effect of salience manipulation.
We consider conditional RTs (conditioned on their correctness) as

random variables that will change as a function of the salience level
of the stimulus. To examine the effect of salience, H or L, on the
conditional distributions, we will rely on hierarchical inference
properties outlined by Townsend (1990b). We briefly reviewed
some major aspects of that hierarchy in an earlier section.
In the following, we discuss the effect of salience manipulation in

terms of RTs based on the two classes of sequential sampling
models. Specifically, we discuss how correct and incorrect RTs
change under different salience conditions, and how strong the
effect is in terms of the hierarchical inference theory. Rather
remarkably, it turns out felicitously that dominance will hold at
the strongest level in the hierarchy and we take advantage of that fact
in our proofs. We start with diffusion model.

Diffusion Model

To motivate our article, we have used the example of a pair of
accrual halting models (see Figure 4); however, our proofs rely only
on the conditional distributions of each channel and not on the
completion time distributions of individual accumulators. Conse-
quently, we now investigate diffusion models which are not inde-
pendent race processes within each channel. Instead, diffusion
models assume that the relative evidence for each outcome is
accumulated continuously with each increment a draw from a
Gaussian distribution. A sample path from a diffusion model is
depicted in Figure 6.
The first passage time, that is the time for a drifting particle to hit

either boundary a or b, is given by the following equation for
constant a and b:

f ðtjRaÞ =
1

PðaÞ
πs2

ða − bÞ2 exp
�
νða − zÞ

s2
−
ν2t
2s2

�

×
X∞

k=1

k exp

�
−

k2π2s2t
2ða − bÞ2

�
sin

�
kπða − zÞ
ða − bÞ

�
: (17)

where v is the drift rate, s is the drift coefficient (s2 is commonly
termed the diffusion rate), and z is the starting point of accumulation
(cf. Ratcliff, 1978). The boundaries a and b represent different
response options in a two-alternative forced-choice (2AFC) task. In
the case, where termination at the a boundary is correct, one can
evaluate the first passage time density for error responses terminat-
ing at b by replacing, a− zwith z− b, and P(a) with P(b). In the case
where termination at b is correct, f ðtjRbÞcan be found by setting the
sign of v to be negative. In this latter case, the first passage time for
error response is found by evaluating f ðtjRaÞ.

P(a) and P(b) give the probability of terminating at the upper, a,
or lower, b, boundaries, respectively. P(a) is computed as:

PðaÞ = exp ð−2νz=s2Þ − exp ð−2νb=s2Þ
exp ð−2νa=s2Þ − exp ð−2νb=s2Þ : (18)

In order to account for empirical data, in particular patterns of
correct and error RTs, several parameters are assumed to vary across
trials (Laming, 1968; Ratcliff, 1978; Ratcliff & Rouder, 1998). Here
we consider two common sources of variability. The first is across-
trial variability in the starting point of accumulation, z. The second is
across-trial variability in the drift rate, v, which is assumed to be
normally distributed across trials with mean, μv, and standard
deviation, σ. Such models have been termed the DDM (Ratcliff &
McKoon, 2008).
In the following, we will present several results on the dominance

relations between a high salience condition model, H, and a low
salience condition model, L, by varying the drift rate from higher to
lower, respectively. We will start from the perspective of theWiener
diffusion model and then extend to models with different types of
across-trial variability. For each pair of item conditions, H and L, we
will present predictions for correct and error RTs separately.
In Appendix A, we prove that the RT distribution conditioned on

correct responding for the high salience target dominates the low
salience target for all t. The proof follows from the properties of the
likelihood function and the relationship between the likelihood
functions and the CDFs for the H and the L cases (see Proposition
9). We can prove an additional result that FHðtjRbÞ > FLðtjRbÞusing
the same strategy. The implication of this result is that both correct
and incorrect responses are slower for the low salience stimulus, L,
than for the high salience stimulus, H. That is, the required domi-
nance relationship holds.
The consistency between correct and error responses is not

surprising. In fact, in the absence of bias (i.e., when a − z =
z − b), Wiener diffusion models predict that the conditional RT
distributions for correct and incorrect responses will be identical.
This property renders the Wiener diffusion model unsuitable as a

Figure 6
Illustration of the Wiener Diffusion Model With No Bias

Note. Response boundaries are labeled a and b. v = 0.05 is the drift rate. See the
online article for the color version of this figure.
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model of human decision-making, where it is common to observe
error RTs which are faster or slower than correct RTs.
To remedy this issue, across-trial variability in the starting point

and drift rate are added to the model. It is common to assume that
starting point is a uniform random variable, z ∼ U(z0 − h, z0 + h),
where 2 h is the width of the Uniform distribution. Drift rate is
commonly assumed to be a Gaussian random variable, v∼N ðμz, σ2z Þ.
Under these assumptions, the predicted first passage time distribu-
tion is a compound distribution that results from compounding the
Wiener diffusion model with the parameter distribution.
In Appendix A, we show generally that with each type of RT

variability, the compound distribution for the high salience target,
F̄HðtÞ, dominates the compound distribution for the low salience
target, F̄LðtÞ(see Propositions ?? and 10). These proofs suggest that,
for Wiener diffusion models, stochastic dominance of H over L is
unaffected by across-trial variability in either starting point or drift
rate. Proposition 11 shows that this result holds for the general
model in which there is both starting point and drift rate variability.
These proofs demonstrate that the diffusion model provides

consistently ordered predictions with regards to drift rates repre-
senting high and low salience conditions substantiating selective
influence. Even with variability in the drift rate and variability in the
starting point, the diffusion model can only predict one ordering: RT
increased with lower salience drift rate, and this prediction holds for
both correct and incorrect responses. Thus, this entire class of
models will produce the canonical SIC patterns under the appropri-
ate stopping rules.

Poisson Race Models

The basic Poisson race model (A. R. Pike, 1966; LaBerge,
1994; Logan, 1996; R. Pike, 1973; Smith & Van Zandt, 2000;
Townsend & Ashby, 1983; Van Zandt et al., 2000), also called the
Poisson counter model, was propagated by the assumption that
neural spikes are emitted when a stimulus is presented. These spikes
are independently stored in different internal “counters” represent-
ing each alternative choice. A response is triggered when the number
of spikes reaches a threshold level for either alternative. An impor-
tant pair of parameters in the Poisson counter model is the time
between arrival of two spikes in each accumulator. In the Poisson
race model, the time between the arrival of two spikes follows an
exponential distribution with rate, v. This assumption implies that
the accumulation process in each counter is a Poisson process. This
type of model remains of interest regardless of whether it properly
depicts neural spike events.
We label the two counters as correct, C, and incorrect, I, and we

label the two rates as vC and vI. Subject bias is reflected in the criteria
value, K, of each counter. Increased bias to one alternative will be
reflected by a smaller value of K for that alternative. Here, we
assume that there is no subject bias. Townsend and Ashby (1983;
Chapter 9) explored model predictions for processing time statistics
of correct and incorrect responses. For instance, in several notable
Poisson counting models, corrects were faster than errors. Smith and
Van Zandt (2000) demonstrated that inhomogeneous Poisson coun-
ters with proportional counting rates always predict faster mean
processing times for correct than for incorrect, decisions. Townsend
and Liu (2020) have very recently proven that, in general, whether
corrects are faster than errors in independent race models (not
confined to, e.g., Poisson counters), depends on the underlying

hazard functions. Futhermore, they extended the conclusions from
Smith and Van Zandt (2000) on the mean processing times for races
with proportional hazard functions, but otherwise inhomogeneous
Poisson counters, to conditional distribution function orderings.
Finally, they discovered the existence of inhomogeneous Poisson
counters that could produce faster incorrect than correct responses.
In the present investigation, we stick to ordinary Poisson models.

We will use g(t) and G(t) for the density and distribution functions.
The density functions for the RT are given below. Without loss of
generality, we assume the correct counter is associated with
response a, thus gðtjRaÞ is the density for correct responses, and
gðtjRbÞ is the density for the error responses.

gðtjRaÞ =
1

PðaÞ ×
ðvCtÞK−1vC expð−vCtÞ

ðK − 1Þ!

×
XK−1

j=0

ðvI tÞj expð−vI tÞ
j!

(19)

gðtjRbÞ =
1

PðbÞ ×
ðvI tÞK−1vI expð−vI tÞ

ðK − 1Þ!

×
XK−1

j=0

ðvCtÞj expð−vCtÞ
j!

; (20)

in which P(a) and P(b) are the response probabilities.
The rates of the two Poisson processes determine the response

probability and the RT. With regard to our salience manipulation, a
mild assumption is the translation of the physical stimulus as a
nondecreasing function of the evidence for its corresponding response;
that is, that the rate in the correct counter is higher in the high salience
condition than in the low salience condition; hence, vHC > vLC.
As with the diffusion model, we assume that the salience manip-

ulation affects only the processing rates and not the other parame-
ters.2 A second important factor that affects both response
probability and RT is the relative relationship between the rates
of the two counters. Here we divide the set of possible relationships
into three cases and discuss the RT predictions for correct and error
responses for each case separately. The three cases are as follows:

1. Poisson Race Model I: When the sum of the rates in both
counters is constant over the salience manipulation, vHC +
vHI = vLC + vLI . That is, when there is a trade-off between
the correct and error accumulator rates. Such a trade-off
would occur, for instance, if the rates were constrained to
sum to one across both accumulators, which is a common
assumption in models of RT (Fific et al., 2010; Little
et al., 2016; Nosofsky & Palmeri, 1997b).

2. Poisson Race Model II: When the salience manipulation
only affects the rate in the correct counter, vHC > vLC but the
rates are equal for the error counter, vHI = vLI . Such a
condition might arise in a detection task, where positive
evidence for the presence of a target would be naturally
larger at higher salience than at lower salience, but the

2 We do not consider across-trial variability in the Poisson model as the
results of the Poisson model can be distinguished from the diffusion model
without the additional variability. Note, however, that Proposition 3 is quite
general and applies also to the Poisson model with across-trial variability.
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absence of evidence would be equated across both high
and low equations.

3. Poisson Race Model III: When the salience manipulation
affects the change of the rates in each counter, vHC − vLC >
vHI − vLI . That is, when the rates are greater for the high
salience conditions in both the correct and error counter
and the difference is greater in the correct accumulator
than in the incorrect accumulator. This model assumes that
the change from L to H increases the rates in both the
correct and error accumulators. This is a somewhat
unusual model in that one would usually expect an
increase in salience to decrease the rate for the error
accumulator, as discussed earlier. Nevertheless, we retain
the case here to examine the dominance behavior of this
assumption. As defined by this inequality, Model III
includes Models I and II as special cases.

Under the first case, Model I, which is the most intuitive of the
three, we show in Appendix B that the Poisson counter model
predicts faster correct RTs in the high salience condition but faster
error responses in the low salience condition (see Propositions 12
and 13). This is the opposite of the prediction made by the diffusion
model. The intuition is that the correct rate is larger in the high
salience condition than in the low salience condition; combined with
the fact that the sum of the rates has to be equal, the implication is
that the error rate has to be higher for the low salience condition
compared to the high salience condition. Consequently, we prove
that while the dominance of H over L holds for correct responses,
[i.e., GHðt

����CorrectÞ > GLðt
����CorrectÞ ], it is reversed for error

responses, [i.e., GHðtjIncorrectÞ < GLðtjIncorrectÞ; where G(t) is
the CDF of the Poisson counter model; see Appendix B]. Figure 7
presents simulated mean RT and accuracy data comparing Model I
Poisson counter to the diffusion model with across-trial variability.
The implication of this result is that for error responses, under the
assumptions listed in Model I, the SIC shapes may not hold to their
error-free counterparts.

In Race Models II and III, we show that the Poisson counter
model predicts faster RTs in the high salience condition than in the
low salience conditions for both the correct and error responses (see
Propositions 14–17). Under these conditions, the SIC results will
hold for both correct and error RTs.

Interim Summary III

Our theorems for the two basic types of process models capable of
making predictions for both RTs and accuracy show that, while the
dominance assumption for correct RTs holds for both the Wiener
diffusion and Poisson counter models, this is not the case for error
RTs. Although low salience stimulus error RTs are slower than high
salience stimulus error RTs for the diffusion model, this is only the
case for some parameterizations of the Poisson counter model,
namely Race Models II and III. In the final section of our article,
we will provide demonstrations of the conditional SIC shapes using
distributions derived from the Poisson counter model.

Computation of Conditional SIC Functions for
Specific Distributions

To demonstrate that the shapes of the conditional SIC functions
follow the form of the error-free SICs when the stochastic domi-
nance assumption is met, we simulated a Poisson race model using
Equations 5, 8, 14, and 16 to compute the RTs for correct and error
trials. We conducted two simulations: one using Poisson Race
Model I in which the sum of the correct and incorrect accumulator
rates was constant across the salience manipulation (Simulation 1)
and one using Poisson Race Model II in which the salience
manipulation only affected the rate for the correct accumulator
(Simulation 2). In the first simulation, we set the total of the A
accumulators to 50 and the total of the B accumulators to 44 to
capture the idea that each pair might not have the same distribution.
Likewise, for Simulation 2, the error accumulator total was set to a
constant 15 for pair A and 12 for pair B. We used four levels of
saliencemanipulation; the rate parameter values are shown in Table 2.

Figure 7
XXX

Note. Left: Simulated mean RTs from aWiener diffusion model with across-trial variability. a= upper boundary, z=
starting point, Sz =measure of across-trial variability on z (half of the length on the uniform distribution’s support), v =
drift rate, Sv = measure of across-trial variability on v (standard deviation of drift rate), s = scaling parameter. Right:
Simulated mean RTs from Poisson Model I. K.A, K.B = response criteria, v.AA = processing rate for the correct
counter, v.AB = processing rate for the incorrect counter
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Across both simulation sets and all four levels, the criteria parameters
were set to 13 across all accumulators.We simulated all combinations
of the Exhaustive and Self-Terminating Parallel and Serial models in
the AND task and the OR task. Note that for correct responses in the
AND task, Exhaustive and Self-Terminating models make identical
predictions. The SIC results are conditioned on correct responding.
Poisson model simulation code is available at: https://github.com/
knowlabUnimelb/SFTERRORS.

Parallel and Serial Exhaustive Models in an AND Task

The accuracy rates from each simulation for the Parallel Exhaus-
tive model are shown in Table 3 for each stimulus: HH, HL, LH, and
LL. As shown in Table 3, Simulation 1 resulted in very low
accuracy, particularly for the LL stimulus (as low as 25%), while
Simulation 2 resulted in modest error rates for all of the stimuli
including the LL stimulus (accuracy of 84% or better). As shown in
Figure 8, the conditional SIC function is completely negative for the
Parallel Exhaustive model—consistent with the predictions of the
error-free SIC function. Visual inspection of the conditional survi-
vor functions shows that stochastic dominance is preserved for the
double-target items.

The mean RTs and accuracy rates for the Serial Exhaustive model
are shown in Table 4 and the conditional SIC functions from the
simulated Serial Exhaustive model are shown in Figure 9. For the
Serial Exhaustive model, the simulated accuracy rates are comparable
to the Parallel Exhaustive model, but the overall mean RTs are longer
for the Serial model as might be expected. As shown in Figure 9, the
accuracy-conditioned SICs show the “S” shape characteristic of the
error-free SIC. Regardless of the accuracy rate, each function was
negative for early times and positive for later times with the integral of
the function equalling zero. Stochastic dominance is again preserved
for the double-target items (see top panels of Figure 9).

Parallel and Serial Models for OR Designs

Parallel Self-Terminating Model in an OR Task

We next investigated the shape of the Parallel Self-Terminating
conditional SIC using simulations. The simulated rate values are
reported in Table 5. Visual inspection of the survivor functions in
Figure 10 reveals that stochastic dominance holds in all cases of
Simulation 2 and most cases, save Level 4, for Simulation 1. In
Level 4 of Simulation 1, the survivor functions start to converge and
although stochastic dominance still holds, there is more overlap than
in the other cases (Table 6).
The simulated SICs are shown in Figure 10. For Simulation 1, at

very low levels of accuracy, the SIC is near 0 demonstrating the fact
that the SIC is a mixture of different states with mixture probabilities
depending on different error levels. It is possible, though we do not see
it here, that at even lower accuracy, for Simulation 1, the survivor
functions cross over in ways which render the conditional SIC
uninterpretable. For Simulation 2, where the accuracy is higher across
salience levels, the SICs are always positive for all t. Furthermore, the
maximum deviation from zero increases with decreasing accuracy.
Overall, the results of both simulations are consistentwith the error-free
SIC results, showing a completely positive conditional SIC function.

Serial Self-Terminating Models in an OR Task

We simulated the Serial Self-Terminatingmodel using the param-
eters shown in Table 5. Themean RT and accuracy results are shown
in Table 7. For both simulations, there exists some conditions under
which the conditional SIC does not match the expected form (see

Table 2
Rates for Poisson Accumulator Simulation of Parallel and Serial
Exhaustive Models in an AND Task

High salience Low salience

AC AI BC BI AC AI BC BI

Simulation 1
Sum held constant

Level 1 45 5 42 2 40 10 37 7
Level 2 40 10 37 7 35 15 32 12
Level 3 35 15 32 12 30 20 27 17
Level 4 30 20 27 17 25 25 22 22

Simulation 2
Salience only affects correct

Level 1 45 15 42 12 40 15 37 12
Level 2 40 15 37 12 35 15 32 12
Level 3 35 15 32 12 30 15 27 12
Level 4 30 15 27 12 25 15 22 12

Table 3
Parallel Exhaustive Mean RTs and Error Rates in an AND Task

Level 1 Level 2 Level 3 Level 4

Mean RT Acc Mean RT Acc Mean RT Acc Mean RT Acc

Simulation 1
HH 346 1.00 392 1.00 449 0.97 501 0.74
HL 376 1.00 430 1.00 488 0.86 527 0.42
LH 366 1.00 416 0.98 469 0.85 513 0.44
LL 391 1.00 448 0.97 502 0.75 537 0.25

Simulation 2
HH 347 1.00 391 0.99 447 0.97 522 0.94
HL 376 0.99 429 0.98 501 0.96 597 0.89
LH 366 0.99 416 0.98 478 0.95 563 0.88
LL 391 0.99 448 0.97 523 0.94 622 0.84

Note. RT = response time.
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Figure 11). While the SIC simulations with near ceiling accuracy
(e.g., Level 1) are approximately zero for all t, as the accuracy rate
decreases the function begins to deviate from zero. In some cases,
the SIC shows the expected negative to positive pattern, but
inspection of the survivor functions reveals a violation of stochastic
dominance in the cases where the SIC deviates from the expected
error-free form. The implication is that, once conditioned on accu-
racy, there is a clear violation of stochastic dominance and therefore
selective influence, which renders the SIC uninterpretable. Hence,

the stochastic dominance of the double-target conditional survivor
functions (LL > LH, HL > HH) needs to be assessed very carefully
before interpreting the conditional SIC. This can be assessed by
plotting the survivor functions and examining these plots for cross-
overs; however, more sophisticated statistical tests are available to
examine stochastic dominance (Houpt et al., 2014). In the present
simulations, the conditional SIC functions for the Serial Self-
Terminating case are not interpretable, in line with the clear viola-
tions of stochastic dominance.

Figure 8
Parallel Exhaustive AND Task Simulation Results

Note. The upper panels show the survivor functions conditioned on correct responding for theHH,HL, LH, and LL stimuli across different levels of parameter settings. The
bottom panel shows the simulated SICs conditioned on accurate responding across each level of parameter settings. SIC = survivor interaction contrast.

Table 4
Serial Exhaustive Mean RTs and Error Rates in an AND Task

Level 1 Level 2 Level 3 Level 4

Mean RT Acc Mean RT Acc Mean RT Acc Mean RT Acc

Simulation 1
HH 598 1.00 678 1.00 773 0.97 870 0.74
HL 641 1.00 730 0.99 827 0.86 909 0.43
LH 635 1.00 721 0.98 814 0.84 897 0.43
LL 678 1.00 773 0.97 869 0.74 936 0.25

Simulation 2
HH 597 1.00 674 0.99 772 0.97 904 0.94
HL 640 0.99 728 0.98 844 0.96 1,003 0.90
LH 632 0.99 720 0.98 830 0.95 979 0.88
LL 674 0.99 773 0.97 903 0.94 1,077 0.84

Note. RT = response time.
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Parallel Exhaustive Model in an OR Task

For our final two simulations, we Simulated Exhaustive model
performance in an OR task using Equations 13 and 15. Correct
responding in these models is also the result of a mixture of states;
however, the predicted RT within each state is an exhaustive process

of both channels. We used the same simulated Poisson accumulator
rates as for the Self-Terminating models in the OR task (see Table 5).
The accuracy rates from each simulation for the Parallel Exhaus-

tive model are shown in Table 8 for each stimulus: HH, HL, LH, and
LL. The accuracy rates were comparable to the Parallel Self-
Terminating model, but the simulated RTs were larger as expected.
The survivor functions in Figure 12 are well ordered with the
exception of Level 4 in Simulation 1. Here, the survivor function
of the LL double target overlaps the HL double target. The simulated
SICs are shown at the bottom of Figure 12. For all of the simulations,
the SIC is negative for all t. That is, despite the overlap with lower
levels of accuracy in Level 4 (Simulation 1), the accuracy-
conditioned SIC matches is the error-free SIC. This is likely due
to the fact that the maximum time is still much slower for the HL,
LH, and LL double targets compared to the HH double target even
when mixing different accuracy states. For the remaining simula-
tions, which preserve the stochastic dominance of the double targets,
the conditional SIC results are completely negative like their error-
free counterpart.

Serial Exhaustive Model in an OR Task

Finally, for the Serial Exhaustive model, we again found sub-
stantial crossover in the survivor functions of the double-target
stimuli (see Figure 13). The mean RT and accuracy results are

Figure 9
Serial Exhaustive AND Task Simulation Results

Note. The upper panels show the survivor functions conditioned on correct responding for the HH, HL, LH, and LL stimuli across different levels of parameter settings.
The bottom panel shows the simulated SICs conditioned on accurate responding across each level of parameter settings. SIC = survivor interaction contrast.

Table 5
Rates for Poisson Accumulator Simulation of Parallel and Serial
Models in an OR Task

High salience Low salience

AC AI BC BI AC AI BC BI

Simulation 1
Sum held constant

Level 1 40 10 37 7 35 15 32 12
Level 2 35 15 32 12 30 20 27 17
Level 3 30 20 27 17 25 25 22 22
Level 4 25 25 22 22 20 30 27 20

Simulation 2
Salience only affects correct

Level 1 40 20 37 17 35 20 32 17
Level 2 35 20 32 17 30 20 27 17
Level 3 30 20 27 17 25 20 22 17
Level 4 25 20 22 17 20 20 17 17
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shown in Table 9. The stochastic dominance was violated most
severely in Simulation 1, where the LH stimulus was often slower
than the LL stimulus. One in the Level 1 simulation, where
accuracy was at ceiling, was the order of the double targets
preserved. In this case, the accuracy-conditioned SIC looks like
its error-free counterpart (as shown in Figure 3). For Simulation 2,
based on visual inspection of Figure 13, stochastic dominance is
mostly preserved. The conditional SICs have the characteristic
S-shape (initially negative and then positive) though the size of

the positive region becomes smaller as accuracy decreases. This
can also be confirmed by using the mean RTs in Table 9 to compute
the MIC using Equation 1. As accuracy decreases, the MIC
becomes more negative. At lower levels of error in an OR task,
Serial Exhaustive processing may mimic Parallel Exhaustive pro-
cessing at the level of the conditional SIC. Though, where the
Parallel Exhaustive conditional SIC is completely negative, the
Serial Exhaustive conditional SIC shows some positivity at later
times.

Figure 10
Parallel Self-Terminating OR Task Simulation Results

Note. The upper panels show the survivor functions conditioned on correct responding for the HH, HL, LH, and LL stimuli across different levels of parameter settings. The
bottom panel shows the simulated SICs conditioned on accurate responding across each level of parameter settings. SIC = survivor interaction contrast.

Table 6
Parallel Self-Terminating Mean RTs and Error Rates in an OR Task

Level 1 Level 2 Level 3 Level 4

Mean RT Acc Mean RT Acc Mean RT Acc Mean RT Acc

Simulation 1
HH 285 1.00 327 1.00 386 .98 446 .75
HL 300 1.00 347 1.00 405 .92 446 .57
LH 305 1.00 355 1.00 425 .94 480 .58
LL 327 1.00 386 .98 447 .75 481 .26

Simulation 2
HH 285 1.00 328 1.00 386 .98 463 .93
HL 301 1.00 349 .99 412 .92 492 .86
LH 305 1.00 355 .99 421 .97 511 .87
LL 328 1.00 386 .98 464 .93 567 .75

Note. RT = response time.
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General Discussion

This article extends the SFT methodology to account for RTs
conditioned on correct and error responding. A critical assumption
of these results is that the double-target stimulus conditions are
ordered in a manner reflecting the effective selective influence of the
experimental manipulation. With satisfaction of this assumption, we
have shown that the SICs for these conditional RTs, under

exhaustive processing, maintain their diagnosticity regardless of
the level of error. We showed through formal proofs that a diffusion
model with across-trial drift and starting point variability preserves
the dominance relationship when it is assumed that a high salience
signal has a higher drift rate than a low salience signal.
We likewise proved that the stochastic dominance relationship

holds for two classes of Poisson counter model. One in which
increasing salience increases the rate of the correct accumulator only

Table 7
Serial Self-Terminating Mean RTs and Error Rates in an OR Task

Level 1 Level 2 Level 3 Level 4

Mean RT Acc Mean RT Acc Mean RT Acc Mean RT Acc

Simulation 1
HH 326 1.00 379 1.00 494 .98 661 .75
HL 326 1.00 379 1.00 465 .92 514 .57
LH 378 1.00 495 1.00 730 .94 990 .58
LL 379 1.00 495 .98 660 .75 760 .26

Simulation 2
HH 339 1.00 401 1.00 494 .98 635 .93
HL 341 1.00 403 .99 493 .96 608 .86
LH 399 1.00 491 .99 636 .97 866 .87
LL 402 1.00 495 .98 635 .93 933 .75

Note. RT = response time.

Figure 11
Serial Self-Terminating OR Task Simulation Results

Note. The upper panels show the survivor functions conditioned on correct responding for the HH, HL, LH, and LL stimuli across different levels of parameter settings.
The bottom panel shows the simulated SICs conditioned on accurate responding across each level of parameter settings. SIC = survivor interaction contrast.
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and one in which increasing salience increases both accumulators
but the difference between the accumulators is constrained to be
higher in the correct pair than the incorrect pair.
However, for the Poisson accumulator model, we additionally

showed through formal proofs that the stochastic dominance rela-
tionship fails if the sum of the correct and error accumulators is
constrained to be equal across high and low salience levels. Because
the sum is constrained, increasing the rate of the correct accumu-
lators in the correct channel necessarily decreases the rate of the

error accumulators in the incorrect channel. This results in faster
correct RTs for higher salience signals as expected but also faster
error RTs for higher salience signals contrary to the usual stochastic
dominance assumption. This by itself offers a strong qualitative test
between two otherwise very similar race models.
Using simulations we demonstrated that the shapes of the SICs

hold when stochastic dominance is preserved but can vary when that
assumption is violated. In practice, one should be able to confirm the
stochastic ordering of the RTs, using visual inspection coupled with

Table 8
Parallel Exhaustive Mean RTs and Error Rates in an OR Task

Level 1 Level 2 Level 3 Level 4

Mean RT Acc Mean RT Acc Mean RT Acc Mean RT Acc

Simulation 1
HH 392 1.00 451 1.00 529 .98 619 .75
HL 432 1.00 507 1.00 607 .92 757 .56
LH 419 1.00 486 1.00 573 .94 681 .58
LL 451 1.00 529 .98 620 .75 747 .26

Simulation 2
HH 392 1.00 450 1.00 528 .98 636 .93
HL 431 1.00 506 .99 610 .96 767 .86
LH 418 1.00 485 .99 575 .97 703 .87
LL 451 1.00 529 .98 636 .93 792 .75

Note. RT = response time.

Figure 12
Parallel Exhaustive OR Task Simulation Results

Note. The upper panels show the survivor functions conditioned on correct responding for the HH, HL, LH, and LL stimuli across different levels of parameter settings.
The bottom panel shows the simulated SICs conditioned on accurate responding across each level of parameter settings. SIC = survivor interaction contrast.
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statistical tests (Houpt et al., 2014), prior to examining the condi-
tional SICs.

Robustness of SIC Predictions Under Errors and
Other Approaches to Dealing With Error RTs

One important implication of the present results is that many
previously published results, which typically do not have perfect
accuracy, are upheld by the present analysis. These results have

typically been accompanied by different arguments supporting the
SIC analysis of RTs from items with imperfect accuracy. For
example, Fific, Nosofsky, et al. (2008) provided simulations for
exhaustive SICs demonstrating that “the serial and parallel archi-
tectures yield the expected MIC and SIC signatures even when error
rates are very high (e.g., .30 for the LL stimulus).” (p. 360). In order
to model the error RTs, Fific et al. introduced parametric instantia-
tions of mental architecture models using random walks to account
for error RTs distribution patterns from serial, parallel, and coactive

Figure 13
Serial Exhaustive OR Task Simulation Results

Note. The upper panels show the survivor functions conditioned on correct responding for the HH, HL, LH, and LL stimuli across different levels of parameter settings.
The bottom panel shows the simulated SICs conditioned on accurate responding across each level of parameter settings. SIC = survivor interaction contrast.

Table 9
Serial Exhaustive Mean RTs and Error Rates in an OR Task

Level 1 Level 2 Level 3 Level 4

Mean RT Acc Mean RT Acc Mean RT Acc Mean RT Acc

Simulation 1
HH 678 1.00 790 1.00 945 .98 1,054 .75
HL 732 1.00 845 1.00 938 .92 943 .56
LH 745 1.00 943 1.00 1,138 .94 1,259 .58
LL 790 1.00 945 .98 1,055 .75 1,084 .26

Simulation 2
HH 692 1.00 802 1.00 945 .98 1,126 .93
HL 742 1.00 862 .99 1,013 .96 1,187 .86
LH 755 1.00 890 .99 1,071 .97 1,305 .87
LL 802 1.00 945 .98 1,126 .93 1,343 .75

Note. RT = response time.
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models (see also Blunden et al., 2015, 2020; Cheng et al., 2018;
Little et al., 2011, 2013; Moneer et al., 2016). Other theoretical
treatments also support the robustness of canonical SIC predictions
under low to moderate error rates (Townsend &Wenger, 2004). Our
present work extends these results and places the argument for the
incorporation of conditional RTs on much firmer theoretical ground.
Gondan (2019) recently investigated the incorporation of error

RTs in the SIC using a different approach based on the use of
censored survivor functions (i.e., Kaplan–Meier survival estima-
tors). In estimating a censored survivor function, the assumption is
that an error RT would have eventually been correct if given more
time to respond. Censored survivor estimators treat errors as missing
data in a principled way and recover a more accurate estimate of the
survival function. Gondan also highlights that a general proof of the
conditionally correct SIC (for the OR case) is not possible because
of the possible violation of stochastic dominance. Here we refine this
observation noting that the limitation is one of identifying the state
of the model when the final response can arise from a mixture of
states.
In the present work, we assume that errors are only caused by the

process being stopped by the completion of an incorrect accumu-
lator. We term this type of error an “accumulator failure”.
Bushmakin et al. (2017) recently argued that other types of proces-
sing errors were also possible. For instance, participants may simply
fail to pay attention to the instructions or ignore (deliberately or not)
the specified termination rule and self-terminate where exhaustive
processing is required for accurate processing. The authors termed
these types of errors “rule-breaking errors.” A more general treat-
ment of these types of errors may be necessary in order to determine
whether the conditional SIC is useful in the case of rule-breaking.
For instance, it may be possible to determine from the error SICs that
rather than using a correct parallel exhaustive process, the rule-
breaking error is better represented as a Serial Self-Termination. We
leave this as a target for future work.
An inherent challenge in understanding and modeling error

responses is the lack of one-to-one mapping between stimuli and
responses in any underlying experimental design. That is, correct
and error responses can arise in a variety of ways, and it is rarely
evident what state led to a particular response. The SFT framework
was developed in tandem with a theoretically driven methodology,
the double factorial paradigm, which we have outlined at the
beginning of this article and illustrated (partially) in Figures 1
and 2. Consider again the canonical example illustrated in these
figures: Two signal positions could be occupied by two target
signals at the same time, or one signal on the right, or one on
the left, or no signals at all (and in addition, each presented signal
could be of high or low salience, but that is tangential to the current
discussion). In both the AND and OR tasks, multiple stimulus
conditions are mapped onto the same response key. In the OR
case, a correct “yes” response could reflect correct identification of
both targets but could also be the consequence of correctly detecting
only the right target while missing the left target, or vice versa. In
fact, it could also be the outcome of numerous other errors, such as
falsely reaching a “yes” decision in either channel when in fact no
target was present. This issue means that there could be many ways
for correct and incorrect responses to ensue, rendering analysis of
correct and incorrect RTs, and the corresponding SIC difficult as our
analyses show above.

To better understand and model error responses within the SFT
framework, and perceptual decision-making in general, we have
developed a novel task, the modified-AND-identification task,
termed ID task for brevity (Howard et al., 2021). The new task
is constructed in such a way that each possible stimulus type is
mapped to a unique response option, and moreover a unique
response key is associated with each of the assumed processing
channels. For example, in a Canonical 2 (signal location: left, right) ×
2 (signal present: yes, no) design, one response key corresponds to the
channel assumed to process the left target, another to the right
channel. Identifying two target signals at the same time requires to
respond to both of them at the same time, by simultaneously
pressing both keys within a window of 150 ms. And, finally, if
no signal is presented, then an alternative third key should be
pressed. The task provides improved traction on multi-accumulator
models with behavioral data. Future work could adapt the task to
deal with factorial manipulations of target salience, thereby provid-
ing the missing information about the response state for correct and
error responses assisting with the estimation of the conditional SIC
functions. In addition, the present investigation offers several
important insights: (a) It shows what is possible or not from the
point of view of accessing canonical SIC predictions conditional on
accuracy or error. This pathway permits strong inferences as to
architecture and decisional stopping rule when exhaustive proces-
sing takes place. (b) It investigated the two most popular and
theoretically treated model classes, the DDM and the Poisson
race model. While two of the race model instantiations follow
the same dominance precepts as the diffusion model, the most
popular makes dramatically different predictions as concerns the
dominance relationships in errored data. (c) Finally, our investiga-
tion presents and discusses various ways that errors can occur. In
particular, if errors of featural or dimensional identification take
place, we considered and simulated ways in which model perfor-
mance via SIC functions can go away from the canonical
predictions.
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Appendix A

Diffusion Model Proofs

Proposition 9. Given two Wiener diffusion models with
different drift rates, vL and vH, such that 0 ≤ vL ≤ vH, then
the likelihood ratio function, LðtÞ = f HðtjRaÞ=f LðtjRaÞ , is
monotonically decreasing with respect to the value of t.
Consequently, the CDF for H stochastically dominates the
CDF for L; that is, FHðtjRaÞ > FLðtjRaÞ for all t.

Proof. The likelihood ratio function of two Wiener diffusion
models can be written as:

LðtÞ = PLðRaÞ
PHðRaÞ

× exp

��
νHða − zÞ

s2
−
ν2Ht
2s2

�

−
�
νLða − zÞ

s2
−
ν2Lt
2s2

��

= C × exp

��
ν2L
2s2

−
ν2H
2s2

�
t

�
:

Where C = PLðRaÞ=PHðRaÞ × exp½ðνH − νLÞða− zÞ
s2

� is a positive
constant.
Since vL ≤ vH, L′(t) < 0, the exponential term will decrease with t

(i.e., be increasingly negative), which implies that L(t) is a decreas-
ing function t. ▫

Corollary 1. The likelihood ratio function of two Wiener diffu-
sion models with rates vL ≤ vH, LðtÞ = f Hðt

����RbÞ=f Lðt
����RbÞ, will

be monotonically decreasing in t. This implies that
FHðtjRbÞ > f LðtjRbÞ for all t.

Proof. The proof is the same as above replacing P(Ra) with
P(Rb) and a − z with b − z. ▫

Proposition 10. Assume that we have two distributions, one
for H and one for L, with densities that possess a parameter v
which may be interpreted as a random variable (V), plus other
parameters that are fixed and the same. Although the next
assumption is easily dropped, we can think of these distribu-
tions involving v as also containing the variable t which
represents processing time as in f(t; v). Next, suppose that we
introduce a third density on that (random) parameter V; call it

q(v; u) dv, where u is a parameter that orders the cumulative
distribution such that Q(v; uL) = P(V ≤ v; uL) < Q(v; uH) =
P(V ≤ v; uH) if and only if uL < uH. For simplicity, we also
assume the distribution ordering comes about through a
single-point crossover of the densities q(v; uH) and q(v;
uL). In the context of SFT, we can think of u as representing
an entity that can be influenced by an experimental factor.

Then, the resultant distributions on t, deriving from the respective
probability mixtures, are ordered as ∫ ∞−∞Fðt; νÞqðν; uðHÞdνÞ >
∫ ∞−∞Fðt; νÞqðν; uðLÞdνÞ.

Proof.Without loss of generality, we presume that the support
of V is the real line. Because F is always growing in v for all
values of t, and the positive area associated with q(v; uH) −
q(v; uL) is equal to the entire negative area we see that the
above inequality has to hold. ▫

Our original article completing the distributional dominance
hierarchy indicated that actual data indicated that single-point
crossovers of densities might not be an anomaly and considerably
stronger dominance, such as through an order on hazard functions or
a monotonic likelihood function, were likewise found in some
standard short-term memory search data (Townsend, 1990b).

Corollary 2. Set F(t; v), plus the remaining constant parame-
ters, to be the Wiener diffusion model with drift v and consider
any probability mixture obeying the above stricture; the order-
ing follows. A special case of interest is found when q is
Gaussian with mean u.

Proof.When the variance is the same in the two distributions,
H and L, the proper ordering results due to the fact that
uL < uH. ▫

Proposition 11. Suppose two cumulative distributions func-
tions are ordered in some variable, such as time t, to give F(t; v,
uH) > F(t; v, uL). Also, suppose that they depend on a second
random variable, for instance, Z. Then, the probability mixture
of the two distribution over Z = z will be ordered in the same
direction.

(Appendices continue)
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Proof. Assume that Z is supported over an interval [a, b].
Integrating∫ b

a½Fðt; ν, uHÞ − Fðt; ν, uLÞ� · pðzÞdz demonstrates
that the average difference is positive. ▫

Corollary 3. The probability mixture over the drift rate yields,
from Proposition 10 an ordering in u. Hence, an ensuing
mixture of these two distributions over a starting point, now
called z, is also ordered.

Corollary 4.Given twoWiener diffusionmodels with different drift
rates, vL and vH, such that 0 ≤ vL ≤ vH, and a starting point, z,
distributed according to any density, p(z), on the domain of z the
compound distribution for H stochastically dominates the com-
pound distribution for L, that is, F̄HðtjRbÞ > F̄LðtjRbÞ for all t.

Proof. The proof follows from Theorem 3 where the density
over v is a point density with 0 variance. ▫

Appendix B

Poisson Counter Model Proofs

Proposition 12. Consider two Poisson counter models with
different rates, one of high salience, vCH , v

H
I , and one of low

salience, vLC , v
L
I . Assume v

L
C < vHC and vHC + vHI = vLC + vLI , then

LðtÞ = gHðtjRaÞ=gHðtjRaÞ is monotonically decreasing with
respect to the value of t. Thus, GHðt

����RaÞ > GLðt
����RaÞ for all t.

To prove Proposition 12, we require the following lemma:

Lemma 1. For any positive integer K, LKðtÞ =
½PK

j=0 ðctÞj=j!�=½
P

K
j=0 t

j=j!� is decreasing with t when c < 1,
and increasing with t when c > 1.

Proof. The Lemma is proved by induction on K, first for c < 1.
When K = 1,

L1ðtÞ =
1 + ct

1 + t
;

and the derivative of L(t) is:

L′1ðtÞ =
c − 1

ð1 + tÞ2 ;

which is negative since c< 1. Thus, L(t) is decreasingwhenK= 1.
Now, given the induction hypothesis that L(t) is decreasing
when K = k, we prove that this is true for K = k + 1. To begin,
we write LK(t) as:

LKðtÞ =
PKðctÞ
PKðtÞ

;

where:

PKðtÞ =
XK

j=0

½ðtÞj=j!�:

The derivative of LK(t) is:

L′KðtÞ = ½PKðctÞ�′PKðtÞ − PKðctÞP′KðtÞ
½PKðtÞ�2

:

Note that

d½PKðtÞ�=dt = PKðtÞ −
tK

K!
= PK−1ðtÞ;

and

d½PKðctÞ�=dt = cP′KðctÞ = c
h
PKðctÞ −

ðctÞK
K!

i
= cPK−1ðctÞ:

Thus, the derivative can be written as:

L′KðtÞ = cPK−1ðctÞPKðtÞ − PKðctÞPK−1ðtÞ
½PKðtÞ�2

< 0.

Therefore, we have by the induction hypothesis that the numera-
tor of the proceeding is negative K = k, that is,

NkðtÞ=
Δ
cPK−1ðctÞPKðtÞ − PKðctÞPK−1ðtÞ < 0.

For K = k + 1, we have:

Nk+1ðtÞ = c ×
�
Pk−1ðctÞ +

cktk

k!

��
PkðtÞ +

tk+1

ðk + 1Þ!

�

−
�
PkðctÞ +

ck+1tk+1

ðk + 1Þ!

��
Pk−1ðtÞ +

tk

k!

�

= NkðtÞ +
tk

k!

�
ck+1PkðtÞ +

ct

ðk + 1ÞPk−1ðctÞ

−
ck+1t

k + 1
Pk−1ðtÞ − PkðctÞ

�
:

Rearranging, we can write:

Nk+1ðtÞ = NkðtÞ +
tk

k!

�
ck+1 − 1 + ½ck+1 − c�

�
1 −

1
k + 1

�

+
Xk

i=2

½ck+1 − ci� 1
ði − 1Þ!

�
1
i
−

1
k + 1

��
: (B1)

Since c < 1 and Nk(t) < 0, it is easy to see that Nk+1(t) < 0,
therefore Lk+1(t) is decreasing with t. By induction, the proposition
is proved for c < 1.
The proof for c > 1 proceeds in an analogous fashion, so we just

point out the difference here: When k = 1, L′(t) is positive which
implies that L(t) is increasing with t. Based on Equation 7 and the
fact that c > 1, when Lk(t) is increasing, we can prove that Lk+1(t) is
also increasing. Therefore, we have proved that c > 1. ▫
Now we are ready for the proof of Proposition 12.

(Appendices continue)

SFT ERROR RTS 27

Template Version: 22 January 2022 ▪ 6:35 pm IST REV-2020-1568_blupencil ▪ 14 February 2022 ▪ 2:25 pm IST



Proof. The likelihood ratio of the low to high salience Poisson
race model is

LðtÞ = PLðaÞ
PHðaÞ

ðvHC tÞKa−1vHCexp ð−vHC tÞ
ðvLCtÞKa−1vLCexp ð−vLCtÞ

exp ð−vHI tÞ
exp ð−vLI tÞ

PKb−1
j=0 ðvHI tÞj=j!PKb−1
j=0 ðvLI tÞj=j!

:

Since vHC + vHI = vLC + vLI , we can simplify the equation as follows:

LðtÞ = PLðaÞ
PHðaÞ

�
vHC
vLC

�
Ka

×

PKb−1
j=0 ðvHI tÞj=j!PKb−1
j=0 ðvLI tÞj=j!

:

Let vLI t = τ, then

LðτÞ = C ×

PKb−1
j=0 ðcτÞj=j!

PKb−1
j=0 ðτÞj=j!

;

in which

C =
PLðaÞ
PHðaÞ

�
vHC
vLC

�
Ka

;

and c = vHI =v
L
I is a constant smaller than 1. Therefore, it follows

from Lemma 1 that L(τ) is a decreasing function, which finishes the
proof. ▫

Proposition 13. Consider two Poisson counter models with
different rates, one of high salience, vHC , v

H
I , and one of low

salience, vLC , v
L
I . Assume v

L
C < vHC and vHC + vHI = vLC + vLI , then

LðtÞ = gHðtjRbÞ=gLðtjRbÞ is monotonically increasing with
respect to the value of t. Thus, GHðtjRbÞ > GLðtjRbÞ for all t.

Proof. The likelihood ratio of the low to high salience Poisson
race model is:

LðtÞ = PLðbÞ
PHðbÞ

ðvHI tÞKb−1vHI exp ð−vHI tÞ
ðvLI tÞKb−1vLI exp ð−vLI tÞ

×
exp − vHC ðtÞ
exp − vLCðtÞ

PKa−1
j=0 ðvHC tÞj=j!PKa−1
j=0 ðvLCtÞj=j!

:

As in the previous proof, we can simplify L(t) as follows:

LðτÞ = C ×

PKa−1
j=0 ðcτÞj=j!

PKa−1
j=0 ðτÞj=j!

;

in which

C =
PLðbÞ
PHðbÞ

�
vHI
vLI

�
Kb

;

where vLCt = τ and c = vHC=v
L
C is a constant greater than 1.

Following Lemma 1, L(τ) is an increasing function, which
finishes the proof. ▫

Proposition 14. Consider two Poisson counter models with
different rates, vHC , v

H
I and vLC , v

L
I . Assume v

L
C < vHC and vHI = vLI ,

then LðtÞ = gHðtjRaÞ=gHðtjRaÞ is monotonically decreasing

with respect to the value of t. Thus, GHðtjRaÞ > GLðtjRaÞ for
all t.

Proof. We have be Equation 19 and the assumption that
vHI = vLI that

LðtÞ = PLðaÞ
PHðaÞ

ðvHC ÞKa

ðvLCÞKa
exp

h
ðvLC − vHC Þt

i
:

The first two terms on the right are positive; since vLC < vHC ,
L′(t) is negative, and L(t) is a decreasing function of t. ▫

Proposition 15. Consider two Poisson counter models with
different rates, vHC , v

H
I and vLC , v

L
I . Assume v

L
C < vHC and vHI = vLI ,

then LðtÞ = gHðtjRbÞ=gHðtjRbÞ is monotonically decreasing
with respect to the value of t. Thus, GHðtjRbÞ > GLðtjRbÞ for
all t.

Proof. By Equation 20 and the assumption that vHI = vLI , we
have

LðtÞ = PLðbÞ
PHðbÞ

expðvLCtÞ
expðvHC tÞ

PKa−1
j=0 ðvHC tÞj=j!PKa−1
j=0 ðvLCtÞj=j!

:

Let C = PL(b)/PH(b), nL(t) = exp (vLCt ), nH(t) = exp (vHC t ),
mHðtÞ =PKa−1

j=0 ðvHC tÞj=j! , and mLðtÞ =
PKa−1

j=0 ðvLCtÞj=j! . We can
rewrite L(t) as:

LðtÞ = C ×
nLðtÞ
nHðtÞ

mHðtÞ
mLðtÞ

:

Hence, the statement that L(t) is monotonically decreasing is
equivalent to:

�
nLðtÞ
nHðtÞ

mHðtÞ
mLðtÞ

�′
=
�
nLðtÞ
nHðtÞ

�′mHðtÞ
mLðtÞ

+
nLðtÞ
nHðtÞ

�
mHðtÞ
mLðtÞ

�′
< 0.

Since

�
nLðtÞ
nHðtÞ

�′
=
h
exp

h
ðvLC − vHC Þt

ii′
= ðvLC − vHC Þ nLðtÞ

nHðtÞ
,

the preceding inequality is equivalent to:

vLC − vHC +
m′

HðtÞ
mHðtÞ

−
m′

LðtÞ
mLðtÞ

< 0.

We also note that:

m′ðtÞ = vC
XKa−2

j=0

ðvCtÞj
j!

:

Substituting, we have:

ðvLCÞKa

PKa−1
j=0 ðvLCtÞj=j!

−
ðvHC ÞKa

PKa−1
j=0 ðvHC tÞj=j!

< 0.

It is easy to prove that an equation of the form ðvÞkP
k−1
j=0

ðvtÞj=j! is

monotonically increasing with v when v > 0, thus the proceeding
inequality holds. ▫
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Proposition 16. Consider two Poisson counter models with
different rates, vHC , v

H
I and vLC , v

L
I . Assume v

L
C < vHC and vLI < vHI ,

and vHC − vLC > vHI − vLI, then LðtÞ = gHðtjRaÞ=gHðtjRaÞis mono-
tonically decreasing with respect to the value of t. Thus,
GHðtjRaÞ > GLðtjRaÞ for all t.

Proof. Given the Poisson density function, L(t) can be ex-
pressed as

LðtÞ = exp½ðvLC + vLI − vHC − vHI Þt� ×
PKb−1

j=0 ðvHI tÞj=j!PKb−1
j=0 ðvLI tÞj=j!

× C;

in which

C =
PLðaÞ
PHðaÞ

�
vHC
vLC

�
Ka

:

By the assumption that vLC + vLI − vHC − vHI < 0, the first term in
L(t) is decreasing with t. Since vHI > vLI , we have by the proof of
Proposition 12, that the second term is also decreasing. Combined
with the fact that C is positive, we can conclude that L(t) is
monotonically decreasing with t. ▫

Proposition 17. Consider two Poisson counter models with
different rates, vHC , v

H
I and vLC , v

L
I . Assume v

L
C < vHC and vLI < vHI ,

and vHC − vLC > vHI − vLI , then LðtÞ = gHðtjRbÞ=gHðtjRbÞ is

monotonically decreasing with respect to the value of t.
Thus, GHðtjRbÞ > GLðtjRbÞ for all t.
Proof. Given Equation 20, we can write the likelihood
ratio as

LðtÞ = exp½ðvLC − vHC Þt� ×
PKa−1

j=0 ðvHC tÞj=j!PKa−1
j=0 ðvLCtÞj=j!

× CðtÞ;

where

CðtÞ = exp½ðvLC − vHC Þt�
PLðbÞ
PHðbÞ

�
vHI
vLI

�
Kb

:

Since vLI − vHI < 0, C(t) is decreasing with t. Following the proof
of Proposition 15, we can see that the ratio

expðvLCtÞ
expðvHC tÞ

PKa−1
j=0 ðvHC tÞj=j!PKa−1
j=0 ðvLCtÞj=j!

;

is also decreasing with t. Therefore, L(t) is a decreasing function
of t. ▫
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